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ABSTRACT 

 

It is shown that some problems of Einstein’s field equations of the theory of General 

Relativity can be modeled as optimal control problems. The advantages of adopting such an 

approach are explained. As a demonstration of this interdisciplinary research, four examples are 

reviewed for problems in relativistic astrophysics and cosmology. The first example, in 

relativistic astrophysics, uses optimal control to prove that the Tolman–Oppenheimer-Volkoff 

equation of hydrostatic equilibrium is a necessary condition to extremize the mass of a stellar 

model. The second example, also in relativistic astrophysics, uses optimal control to estimate an 

upper limit to the mass of a neutron star. The third example, in relativistic cosmology, uses 

optimal control to construct a closed universe with maximum lifetime. The fourth example, in 

cosmological inflation, uses optimal control to construct a model of a slow-roll inflationary 

universe with minimum change of the scalar field. Results show that optimal control is more 

powerful than classical variational calculus and that optimal control models of Einstein’s field 

equations add physical significance to their solutions. Extension to other problems is explored, 

and difficulties in the formulation of optimal control problems in General Relativity are 

indicated. 
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1. Introduction 

 

General Relativity (GR) is Einstein’s theory of gravitation. In GR, the interaction 

between the mass-energy distribution and the spacetime geometry is described by Einstein’s field 

equations. The theory of optimal control deals with optimal control problems, which require 

control functions to be optimal with respect to given criteria. The theory has many interesting 

applications in various fields of engineering, economics, management, and biology. However, 

quite a few applications have been made to GR. This paper presents a review of some problems 

in GR that have been formulated and solved as optimal control problems. The example problems 

demonstrate the advantages of adopting such an approach and motivate further applications of 

optimal control to Einstein’s field equations. 

In particular, Einstein’s interior field equations are potential candidates for optimal 

control application.  It is well known that the interior field equations are under-determined, in the 

sense that the number of equations is less than the number of variables. To obtain an interior 

solution, an additional equation has to be introduced. Ideally, an equation of state is to be 

specified. However, this approach has led to quite a few exact solutions with simple equations of 

state. When realistic equations of state are specified, the problem becomes analytically 

formidable, and numerical methods have to be used.  More often, a relation between some 

variables is assumed so that the problem is simplified. In fact, most interior solutions have been 

obtained this way. An alternative approach is to formulate the problem as an optimal control 

model. In such a model, state functions are governed by differential equations that include some 

unknown control functions. The problem is initially under-determined. But the model also 

incorporates a functional, of the state and control functions, that is required to be optimal. Then, 

the conditions of optimality determine the control functions and the problem becomes 

determined. This approach could lead to new physical interpretation and a deeper understanding 

of the construction of interior field equations and their solutions. 

 

The paper is organized as follows. A brief outline of optimal control models is given in 

section 2. In section 3, two applications of optimal control to stellar models are reviewed. 

Sections 4 and 5 give a review of an application, respectively, to cosmology and inflation. In the 
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concluding section, extension to other problems is suggested, and difficulties in the formulation 

of optimal control problems in GR are indicated. 

2. Optimal Control Models  

 

In such models, a system is defined in terms of an n-dimensional state vector )(tx and an m-

dimensional control vector )(tu . An optimal control problem [1-3] is to determine the control 

vector function u which maximizes the objective function 

,),(),,(
1

0

11 +=
t

t

txFdttuxLJ                                      (1) 

where the system evolution equation is 

,),,( tuxfx =                                                   (2) 

subject to the constraints 

.0),(,)(
1100

== utxxtx                           (3) 

The functions L  and F  are scalars.  The terminal constraint function   is an s-dimensional 

vector.  The set   is the set of admissible controls. The initial time 0
t  is given explicitly but the 

terminal time 1
t  may be unspecified. 

The Hamiltonian for this problem is 

  t)λ, f(x, u,, u, t)+, t) = L(xH(x, u,                              (4) 

where λ  denotes an n-dimensional vector of costate functions. 

According to Pontryagin’s maximum principle, the following necessary conditions hold 

along an optimal trajectory. 

,,minarg , t) u, x H(  u =                                (5) 
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,
11,1

−−   ,  F) =  H(t
,tt                                (8) 

where a comma denotes a partial derivative, x  and u  denote the candidate state and control 

vectors respectively, and   is an s-dimensional vector of constant Lagrange multipliers 

associated with  . 
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The terminal conditions (7) and (8) result from the transversality condition 

.0])()[(
),(,11 1111
=++−

txt,x
t F) H(tx)(tF


                      (9) 

If some initial parameters are not specified similar conditions may be obtained at the initial time

0
t . 

The optimal control problem in the above form is referred to as a problem of Bolza.  If 

0),(
11
=txF  then the problem is a problem of Lagrange, while if 0),,( =tuxL  then it is a 

problem of Mayer. The three problems are equivalent: each of them can be converted to the other 

by suitably defining the state functions. 

 

3. Application of Optimal Control to Stellar Models 

 

One of the main applications of GR is the construction of stellar models [4]. The simplest 

such model is an isolated static perfect fluid sphere, of coordinate radius R and effective mass-

energy M . The vacuum outside the sphere has the Schwarzschild metric 
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In the interior of the sphere, the spacetime is described by the static spherically 

symmetric metric 
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where   and m are functions of the radial coordinate r . The energy-momentum tensor for a 

perfect fluid is given by 

( ) ,abbaab pgUUpT −+=                                         (12) 

where   and p  are, respectively, the fluid density and pressure, and 
aU  is the four-velocity of 

the fluid. The field equations reduce to 
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where a prime denotes differentiation with respect to r . 

Now, we give a review of two problems in stellar models, that have been solved using 

optimal control: a derivation of the equation of hydrostatic equilibrium, and a calculation of the 

maximum mass of a neutron star. 

 

3.1.   The equation of hydrostatic equilibrium 
 

The first law of thermodynamics relates the number density of baryons n  to   and p  by the 

equation 

.
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−=
p

n

d

dn
                                                   (16) 

The following theorem has been proved [5,6]. 

Theorem 1. Among all momentarily static and spherically symmetric configurations of cold, 

catalyzed matter that contain a specific number of baryons inside a sphere of radius R , 

,)(
2

14
0

2

1

2



−









−=

R

drrn
r

m
rN   

that configuration which extremizes the mass as sensed from outside, 
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satisfies the Tolman-Oppenheimer-Volkoff (TOV) equation of hydrostatic equilibrium [7,8] 
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Proofs to the theorem have been given in [5,6], using classical variational calculus, with each of 

them filling about two pages. Rather than using classical variational calculus, [9] gives a proof 

using optimal control.  The problem is formulated as an optimal control problem as follows. 

Determine the control function )(rn  which extremizes the objective function 
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where the system equations and constraints are 
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,0)0(,0)0( == zm                                (21) 

.)( NRz =                                                             (22) 

Application of Pontryagin’s maximum principle led directly to the TOV equation, in a way that 

is simpler and more elegant than the classical variational calculus. Details are given in [9]. 

 

3.2.   The maximum mass of a neutron star 
 

 

In observational astrophysics, an important problem is to identify an object as a black hole or 

a neutron star. The mass of a stable neutron star should not exceed a certain limit; otherwise, the 

star collapses into a black hole. The identification of an object depends on whether the object’s 

observed mass exceeds that limit. Hence, an estimate of the maximum mass of a stable neutron 

star is needed. However, the calculation of the maximum mass depends on the equation of state 

(EOS), which can be predicted only at certain density ranges. For neutron matter with higher 

densities, EOS cannot be predicted. By imposing only some physical constraints at higher 

densities, [8] suggested that the mass of a stable neutron star becomes maximum for the stiffest 

possible EOS. 

By using optimal control, [10] successfully proved this suggestion; namely that, in the regions 

where it is uncertain, EOS that gives the maximum mass is =p . 

With a few simplifications, their work can be summarized as follows. Consider a neutron star 

with field equations (13-15) for a static perfect fluid sphere.  Let the star be composed of two 

regions: 

(a) Region A: an inner core with higher densities, where 

.,,0
000

ppprr
cc

                         (23) 

(b) Region B: an outer envelope with given EOS )(pp = , where 

.0,,
000

 ppRrr
R

                           (24) 

The mass contained in B  depends not only on the given EOS, but also on the values at the 

boundary 0
rr = , and hence it is denoted ),,(

0000
mrM  . For the dynamical system, take   as the 

independent variable, the functions mrp ,,  as state functions, and pu = as the control function. 

Then, the optimal control problem is formulated as follows. Determine the control function )(u  

which maximizes the objective function 
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subject to the system equations and constraints 
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where a dot denotes differentiation with respect to  . 

Application of Pontryagin’s maximum principle leads to the optimal control === ppu 1  

with possibly a switch to c
pppu === 0 . Further calculations result in a maximum mass of 

about 
M2.3  for 

-314

0
gcm106.4 = . Details are given in [10]. 

 

4.   Application of Optimal Control to Cosmological Models 

 

Another important application of GR is the construction of cosmological models. The simplest 

such model is a homogeneous and isotropic spacetime, filled with perfect fluid, with the 

Friedmann-Robertson-Walker (FRW) metric 
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where a  is a function of the cosmic time t , and 1,0,1 +−=k   corresponds to an open, flat, and 

closed universe respectively.  The function )(ta  is called the scale factor. 

Einstein’s field equations, with a cosmological constant , may be reduced to 
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where a dot denotes differentiation with respect to t , and H  is the Hubble parameter 

a
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Many models consider Einstein’s field equations with a varying cosmological constant and a 

linear equation of state 

,10,.const, == p                           (34) 

in which case equations (31) and (32) give 
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Then, such models have two equations (33) and (35) in three unknowns )(ta , )(tH and )(t .  In 

order to obtain solutions, authors assumed various forms of  , for example [11]-[19]. Rather 

than using an arbitrary form of  , optimal control has successfully been used [20] to construct a 

model that   is determined by the requirement of optimality. 

 

A closed universe with a maximum lifetime [20] 

 

For a closed universe, )1( +=k , the scale factor increases from the initial size until 0=a  then 

contracts.  A closed universe has a finite lifetime. It is interesting to design a closed universe 

with a maximum lifetime. Equations (33) and (35), with 1+=k , take the form 

,aHa =                                               (36) 
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which is a system of two equations in three unknowns )(ta , )(tH and )(t . Using equations 

(32) - (34), one obtains 
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For the dynamical system (36) and (37), the functions a , H , Hw = ,   are taken as state 

functions, and wu =  as the control function. 

Further, boundary conditions need to be specified. In order to avoid the Big Bang singularity, the 

initial time, 0==
i

tt , is taken shortly after the Big Bang moment, when the size of the universe 

becomes little greater than zero, namely 0)0(
0
= aa . Assuming 0)0( =H , an expanding 
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universe requires 0)0( = AH . On the other hand, the terminal time Ttt
f
==  is taken when 

expansion stops, and the size of the universe reaches its maximum, namely 0)( =TH  and 

0)( TH . 

Then, the optimal control problem is to determine the control function )(tu which maximizes the 

objective function 
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Application of Pontryagin’s maximum principle leads to the optimal solution 

,1−=u                                                      (46) 
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The maximum lifetime is 
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The maximum value of the scale factor is 
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This universe expands to the above maximum size at Tt = and then contracts to 
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5.   Application of optimal control to inflationary cosmological models 

 

Inflationary models are based on the effective theory of a self-acting scalar field    with self-

action potential )(V , which interacts minimally with the gravitational field [21]. For such 

models, with the FRW metric, the field equations, with   term, reduce to 
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Any one of equations (52)-(54) may be derived from the other two.  Thus, we have a system of 

two independent equations in three unknowns a,   and V  . 

In order to obtain a solution, an additional assumption is needed. For example [22] and 

[23] assumed forms of )(VV = , [24] assumed forms of )(taa = , and [25] assumed forms of 

)(t = . 

Rather than using an arbitrary assumption, optimal control has successfully been used 

[26] to construct a model of a slow-roll inflationary universe with minimum change of the scalar 

field. 

 

A slow-roll inflationary universe [26]  

 

A slow-roll regime requires a slow change in the field  . Thus, the evolution of the universe 

must be such that )()(:
12

tt  −=  on any finite time interval ],[
21

tt  would be the smallest 

among all other possible evolutions. 

By adding equations (52) and (53), one obtains 
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Taking a  and H  as the state functions, and Hu =  as the control function the optimal control 

problem is then formulated as follows. Determine the control function u which minimizes the 

objective function 
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subject to 
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It should be noted that, given a solution a , H , u to the above problem, the scalar field   is 

determined by the integration of equation (55), and the potential V  is determined as an output of 

the system by 

,3
2

8 2

2
−++= uH

a

k
V                                            (60) 

Application of Pontryagin’s maximum principle leads to 
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For a flat universe, 0=k , the optimal solution is given by 
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Finally, equations (62) and (60) give the potential 
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The potential V , as a function of  , is then given by 
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This solution with different constants, has been obtained in [27] using classical variational 

calculus. 

 

6.   Conclusion 

 

We have given a review of four example problems in relativistic astrophysics and 

cosmology that have been formulated and solved as optimal control problems. 

The first example in section 3 gives a proof of a variational principle that is brief and 

straightforward, compared to proofs using classical variational calculus. This advantage should 

be expected. Pontryagin’s maximum principle already used variational calculus to derive the 

optimality conditions for a general problem form. Once the problem at hand is cast into that 

form, the optimality conditions can directly be applied. Variational principles are common in 

branches of physics, and could be candidates for optimal control application. 

The second example in section 3 determines the configuration of a neutron star with 

maximum mass. The clever formulation of this problem yielded a typical optimal control 

problem that had been solved using optimal control methods.  

For stellar models, Fujisawa et al [28] established a bound on the maximum M/R ratio, 

where a numerical solution was given. The problem was initially modeled as an optimal control 

problem. However, it was solved using variational calculus that required long derivations. It 

would be interesting to solve that problem using optimal control methods. 

The other two examples are different; no objective function is initially given. However, 

they show that some of Einstein’s field equations can, indeed, be modeled as optimal control 

models. Rather than using adhoc assumptions, an objective function is sought to be optimal.   

Then, the well-established techniques of optimal control would result in the optimal solutions. 

This approach may be extended to other models with different configurations such as 

rotating stars, binary systems, and inhomogeneous and/or rotating universes. It may also be 
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extended to models with more realistic matter having, for example, anisotropic pressure and/or 

viscosity. 

However, in constructing optimal control models, specifying state and control functions 

is not a simple task, and should take utmost care. Issues of controllability and existence may 

sometimes be handled. A more serious challenge is to specify some optimality criteria that 

should be physically relevant and should also yield a mathematically solvable problem. It would 

take a lot of hard work but could, in the end, lead to interesting and powerful results. 

It is worth noting that a different application of optimal control to GR has recently been 

published.  Ansel [29] presented a path integral formalism, based on the framework of optimal 

control theory, with a new Lagrangian different from the Einstein-Hilbert Lagrangian [30]. 

Einstein’s field equations are then recovered exactly with variations of the new action functional. 
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