The crucial role of long non-coding RNAs in the pathogenesis, therapeutic response, and clinical implications of esophageal cancer

Ahmed A. El-Husseiny 1,2*, Nada S. Ali 1, Morkoss M. Fakhry 1

1 Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt.
2 Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt

* Corresponding author: Assoc. Prof. Ahmed A. El-Husseiny
Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt, Email: ahmed-elhusseiny@eru.edu.eg.
ORCID: https://orcid.org/0000-0003-0153-6555 Tel: +201020002796

Received 8th August 2023, Revised 21st October 2023, Accepted 26th October 2023
DOI: 10.21608/ERURJ.2024.228118.1067

ABSTRACT
Esophageal cancer (EC) is the 2nd fatal gastrointestinal tract malignancy and the sixth most predominant driver of cancer-associated mortality worldwide. Interestingly, long non-coding RNAs (lncRNAs) have a sequence of more than 200 base pairs and are regarded as one of the epigenetic elements. LncRNAs have been demonstrated to influence EC features comprising initiation, development, angiogenesis, invasion, and metastasis. Notably, lncRNAs could modulate the expression of several genes and chromatin architectures which are implicated in EC pathogenesis. Besides, numerous lncRNAs have a crucial role in the chemotherapeutic response of EC cells. Furthermore, lncRNAs are thought to be a promising biomarker in EC whose expression patterns can distinguish between EC subtypes and stages as well as predict cancer aggressiveness. Thus, the
The current review emphasizes the latest updates on the modulatory functions of lncRNAs in EC pathogenesis, their significance to the EC cells' therapeutic response, and their clinical efficacy as prognostic and diagnostic biomarkers.

**Keywords:** Esophageal cancer; LncRNAs; Chemotherapeutic resistance; Diagnosis; Prognosis

**List of abbreviations:**
- 5-FU: 5-fluorouracil
- ABC: ATP-binding cassette
- ABCG2: ATP-binding cassette G2
- AKT: Protein kinase B
- AUC: Area under the curve
- Bcl2: B-cell lymphoma 2
- BUBR1: Bub1-related kinase
- CCAT2: Colon cancer-associated transcript 2
- CDH3: Cadherin 3
- CRT: Chemoradiotherapy
- CSC: Cancer stem cell
- CT: Computed tomography
- DFS: Disease-free survival
- DNMT: DNA methyltransferase
- EGFR: Epidermal growth factor receptor
- EMT: Epithelial-mesenchymal transition
- ERK1/2: Extracellular signal-regulated kinase 1/2
- ESCC: Esophageal squamous cell carcinoma
- EAC: Esophageal adenocarcinoma
- EC: Esophageal cancer
- EZH2: Enhancer of zeste homolog 2
- FAK: Focal adhesion kinase
- FDG/PET: Fluoro-deoxy glucose positron emission tomography
- GSTP1: Glutathione S-transferase P1
- H3K27me3: Tri-methylation of lysine 27 on histone H3 protein
- IGF2BP2: Insulin-like growth factor 2 mRNA-binding protein 2
- IL-6: Interleukin-6
- KLF2: Krüppel-like factor 2
- KLK4: Kallikrein related peptidase 4
- LASP1: LIM and SH3 domain protein 1
- LncRNAs: Long non-coding RNAs
- LRP6: LDL receptor-related protein 6
- MALAT1: Metastasis-associated lung adenocarcinoma transcript 1
- miR: microRNA
- MMP3/10: Matrix metalloproteinase 3/10
- MRPs: Multidrug resistance proteins
- MTDH: Metadherin
- MTHFR: Methylenetetrahydrofolate Reductase
- mTOR: Mammalian target of rapamycin
- ncRNAs: Noncoding RNAs
- NEAT1: Nuclear paraspeckle assembly transcript 1
- NF-κB: Nuclear factor kappa B
- NONO: Non-POU domain-containing octamer-binding protein
- NRF2: Nuclear factor erythroid 2-related factor 2
- NSD 2: Nuclear receptor binding SET domain protein 2
- OS: Overall survival
- PI3K: Phosphoinositide-3 kinase
- PLK1: Polo-like kinase 1
- SIRT1: Sir2uin 1, Sox-4: SRY-box 4
- STAT: Signal transducer and activator of transcription
- TAF1: TATA-box binding protein-associated factor 1
- TNF-α: Tumor necrosis factor-α
- TNM: Tumor-node- metastasis
- TOP2A: Topoisomerase 2-alpha
- TPX2: Targeting protein for Xklp2
- WGCNA: Weighted Gene Co-expression Network Analysis
- Wnt: Wingless/Integrated
- WTAP: WT1 associated protein
- ZEB 1: Zinc finger E-box binding homeobox 1.
1. Introduction

Worldwide, esophageal cancer (EC) is considered the 7th most prominent malignancy of the digestive system in terms of incidence, and it is considered one of the most fatal tumors. EC was classified into two pathological types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) (1). The main risk factors for EC are tobacco use, alcohol drinking, gastroesophageal reflux, dietary carcinogens, inadequate consumption of vegetables and fruits, and inadequate vitamin intake. Besides, the genetic factors enhance the susceptibility of EC (2). Even though there is limited treatment for EAC patients, The combination of radiotherapy and chemotherapy serves as an irreplaceable anticancer agent during the whole therapy with neoadjuvant, palliative, and curative treatments. Chemotherapeutic agents are commonly used in the clinical fields of EAC and ESCC, comprising cisplatin, 5-fluorouracil (5FU), paclitaxel, Adriamycin, and gemcitabine. Additionally, radiotherapy is intended for the destruction of the DNA of cancer cells, especially for local advanced EC. Many reports have indicated that EC cells tend to be resistant to chemotherapy and radiotherapy, resulting in poor prognosis, cancer recurrence, and metastasis (3, 4).

Noncoding RNAs (ncRNAs) are RNA transcripts that encode noncoding sequences of the human genome and are divided into particular types related to their length and structure. It is now well documented that ncRNAs including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) can influence many processes that contribute to multiple diseases, including cancers (5, 6), liver diseases (7, 8), bone diseases (9, 10), multiple myeloma (11, 12), cardiovascular diseases (13, 14), rheumatoid arthritis (15, 16), diabetes (17, 18), obesity and metabolic syndrome (19, 20).

Notably, lncRNAs are comprised of a sequence of more than 200 base pairs and have been demonstrated to exist both in the cytoplasm and nucleus, functioning through a variety of signaling pathways (21). The lncRNAs expression is frequently modulated by several transcription factors. According to the biogenesis and functions of these lncRNAs, they were found to be extensively linked with different human cancer processes such as (apoptosis, epithelial-mesenchymal transition (EMT), autophagy, and metastasis) (22).
Recent studies have highlighted the abnormal expression of lncRNA in the EC and also shown the potential role of them as a therapeutic target in the carcinogenesis process (23, 24). In cancer types such as EAC and ESCC, dysregulated lncRNAs may act as potential biomarkers for the diagnosis and prognosis of these types of cancers, as they could participate in therapeutic resistance by regulating cell proliferation, apoptosis, DNA damage repair, and cancer stem cell (CSC) activation (25).

In the present review, we clarified the contemporary findings concerning the role of lncRNAs in EC pathogenesis and therapeutic resistance, with an emphasis on their promising role as diagnostic and prognostic biomarkers.

2. LncRNAs biogenesis and functions

Interestingly, lncRNAs are made up of molecules that are longer than 200 base pairs. RNA polymerase II is responsible for the transcription of these molecules. Like mRNA, lncRNAs undergo splicing, capping, and addition of poly A tail. It has been established that lncRNAs function through a variety of signaling pathways both in the cytoplasm and the nucleus (21). According to the latest research, lncRNAs control the main cancer-causing pathways at the epigenetic, transcriptional, and post-transcriptional mechanisms. The epigenetic control of target genes by lncRNAs, particularly through their repressive activities, is one of their most commonly recognized biological functions (26, 27). Besides, lncRNAs control the function of promoter enhancers to modulate gene expression directly. Moreover, lncRNAs may further modulate the gene expression and mRNA translation by interfering with the post-transcriptional processing of mRNAs and governing mRNA stability, respectively. Furthermore, lncRNAs serve like sponges by joining the targeted miRNAs (28).

3. The role of LncRNAs in EC pathogenesis

In contrast to normal cells, EC tissues exhibit dysregulated lncRNAs, according to several studies. These lncRNAs have been demonstrated to control important EC growth and progression pathways, including cell proliferation, apoptosis, angiogenesis, and invasion (Table 1). For instance, it has been reported that one lncRNA, Nuclear paraspeckle assembly transcript 1 (NEAT1), is elevated in EC and modulates miR-377/ E2F3 signaling pathway to encourage EC cell growth and invasion. By controlling the expression of genes involved in cell motility and invasion, a different lncRNA known
as metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been related to the metastasis of EC (29, 30).

Awareness of the molecular processes that result in EC pathogenesis and the identification of new therapeutic targets for the creation of more potent treatments may be gained from an understanding of the role of lncRNAs in this illness. To completely understand the intricate relationships between lncRNAs and other genetic and environmental variables implicated in EC, more research is nonetheless required (31).

The tissue-specific nature of lncRNAs makes it difficult to research their impact on EC. LncRNA expression patterns can change depending on the stage and subtype of cancer, and they can be very specific to particular tissues or cell types. As a result, choosing the right lncRNA target for a particular patient can be difficult (32, 33).

The creation of efficient therapeutic approaches that can target dysregulated lncRNAs in EC is another difficulty. Large molecules like lncRNAs are unable to easily pass across biological barriers like the blood-brain barrier or the epithelial lining of the digestive system. Therefore, it is crucial to create efficient delivery tool that can get past these obstacles and transfer the medication to the intended area (34, 35).

Despite these obstacles, there is mounting proof that lncRNAs are essential in the development of EC. Additional study in this field may result in the creation of novel therapeutic and diagnostic approaches that can enhance the prognosis of disease patients. A number of additional lncRNAs, in addition to those already described, have been connected to the pathogenesis of esophageal cancer (36). By controlling the expression of genes associated with cell cycle progression and apoptosis, for instance, a study Sun et al. revealed that a lncRNA termed HOXA11-AS is elevated in tissues from patients with esophageal cancer and enhances cancer cell proliferation and invasion (37).

The expression of genes involved in the EMT process is controlled by a lncRNA known as colon cancer-associated transcript 2 (CCAT2), which was increased in EC. CCAT2 improves cancer cell proliferation and metastasis by modulating Wnt signaling axis (38).

These findings imply that, through controlling important physiological processes involved in cancer cell proliferation and invasion, dysregulated lncRNAs play a crucial function in the initiation and
spread of EC (24). As a result, focusing on these lncRNAs may be a useful therapeutic approach for the management of EC (39). However, there are a number of difficulties in creating efficient lncRNA-based treatments for esophageal cancer. These include the fact that lncRNAs are tissuespecific, the challenge of delivering lncRNAs to the target tissue, the possibility of off-target effects, and the requirement for properly planned clinical studies to guarantee the safety and effectiveness of the therapy (40).

Despite these difficulties, the potential advantages of lncRNA-based therapy for patients with EC make this a fascinating field of study that merits more investigation. Further investigation in this field may result in the discovery of novel diagnostic and prognostic biomarkers for esophageal cancer, which could improve patient outcomes by enabling earlier detection and more focused treatment (24). The potential benefits of these treatments for patients make this an attractive area of research that calls for additional inquiry, despite the difficulties in establishing effective lncRNA-based therapeutics for esophageal cancer (29).

**Table 1.** The role of lncRNAs in the pathogenesis of EC

<table>
<thead>
<tr>
<th>LncRNAs</th>
<th>Alteration</th>
<th>Role in EC</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEAT1</td>
<td>↑</td>
<td>Promote tumor growth, invasion, and metastasis by modulating miR-377/E2F3 signaling pathway</td>
<td>(30)</td>
</tr>
<tr>
<td>HOTAIR</td>
<td>↑</td>
<td>Promotes the progression and EMT of EC by downregulating the Wnt inhibitory factor 1 expression</td>
<td>(41, 42)</td>
</tr>
<tr>
<td>MIR22HG</td>
<td>↑</td>
<td>Suppression of MIR22HG decreases proliferation and triggers apoptosis by targeting STAT3/c-Myc/FAK.</td>
<td>(43)</td>
</tr>
<tr>
<td>SNHG5</td>
<td>↑</td>
<td>Promotes the growth and migration of EC cells via modulation of the Wnt/β-catenin axis.</td>
<td>(44)</td>
</tr>
<tr>
<td>UCA1</td>
<td>↑</td>
<td>Promotes tumor growth and metastasis by modulating Sox-4.</td>
<td>(45, 46)</td>
</tr>
<tr>
<td>LINC00673</td>
<td>↑</td>
<td>Enhances ESCC cell growth by upregulating EZH2-induced H3K27me3.</td>
<td>(47)</td>
</tr>
<tr>
<td>FAM83H-AS1</td>
<td>↑</td>
<td>Improves tumor growth and metastasis of ESCC by modulating miR-10a-5p/Girdin.</td>
<td>(48, 49)</td>
</tr>
<tr>
<td>Genes</td>
<td>Regulation</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>LUCAT1</td>
<td>↑</td>
<td>Enhances ESCC tumorigenesis by regulating DNA methyltransferase 1. (50)</td>
<td></td>
</tr>
<tr>
<td>PANDAR</td>
<td>↑</td>
<td>Promotes ESCC cell proliferation by regulating SAFA. (51)</td>
<td></td>
</tr>
<tr>
<td>LINC00857</td>
<td>↑</td>
<td>LINC00857 silencing represses EAC cell growth and increases apoptosis by modulating MET and STAT3. (52)</td>
<td></td>
</tr>
<tr>
<td>SNHG7</td>
<td>↑</td>
<td>Promotes EC cell proliferation, migration and reduces apoptosis by modulating the production of p15 and p16. (53)</td>
<td></td>
</tr>
<tr>
<td>GAS5</td>
<td>↑</td>
<td>Enhances tumor proliferation and invasion by targeting miR-301a/ Wnt/β-catenin signaling axis. (54)</td>
<td></td>
</tr>
<tr>
<td>TTN-AS1</td>
<td>↑</td>
<td>Enhances ESCC cell growth and metastasis by modulating miR-133b/Snail1. (55)</td>
<td></td>
</tr>
<tr>
<td>PVT1</td>
<td>↑</td>
<td>Promotes tumor growth and metastasis by modulating miR-203/LASP1 signaling axis. (56, 57)</td>
<td></td>
</tr>
<tr>
<td>LINC00152</td>
<td>↑</td>
<td>Promotes cancer cell proliferation and EMT. (58, 59)</td>
<td></td>
</tr>
<tr>
<td>DANCR</td>
<td>↑</td>
<td>Promotes ESCC cell growth, migration, and invasion. (60)</td>
<td></td>
</tr>
<tr>
<td>RPL34-AS1</td>
<td>↓</td>
<td>Serves as a tumor suppressor by reducing EC cell proliferation and invasion. (61)</td>
<td></td>
</tr>
<tr>
<td>CCAT1</td>
<td>↑</td>
<td>It has been associated with tumor progression and poor prognosis of EC. (62, 63)</td>
<td></td>
</tr>
<tr>
<td>AFAP1-AS1</td>
<td>↓</td>
<td>Suppresses tumor growth and invasion. (36)</td>
<td></td>
</tr>
<tr>
<td>LOC285194</td>
<td>↓</td>
<td>It has been associated with a poor prognosis of EC and its downregulation linked with advanced TNM stage. (64)</td>
<td></td>
</tr>
<tr>
<td>MEG3</td>
<td>↑</td>
<td>Promotes tumor growth and metastasis. (65)</td>
<td></td>
</tr>
<tr>
<td>ADAMTS9-AS2</td>
<td>↓</td>
<td>Suppresses tumor growth and metastasis through induction the methylation of the CDH3 promoter. (66)</td>
<td></td>
</tr>
<tr>
<td>MALAT1</td>
<td>↑</td>
<td>Promotes tumor growth, invasion, and metastasis. It also associated with poor prognosis of EC. (29)</td>
<td></td>
</tr>
<tr>
<td>ZFP36L1</td>
<td>↓</td>
<td>Inhibits tumor growth and invasion. (36)</td>
<td></td>
</tr>
<tr>
<td>H19</td>
<td>↑</td>
<td>Enhances tumor growth and metastasis. (67)</td>
<td></td>
</tr>
<tr>
<td>LIN28A</td>
<td>↑</td>
<td>Promotes tumor growth and metastasis (68)</td>
<td></td>
</tr>
</tbody>
</table>
### Table 1: Modulation of IncRNAs and Their Associated Genes in ESCC

<table>
<thead>
<tr>
<th>IncRNA</th>
<th>Change</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNHG6</td>
<td>↑</td>
<td>Promotes tumor growth and metastasis.</td>
<td>(69)</td>
</tr>
<tr>
<td>RP11-465B22.8</td>
<td>↑</td>
<td>Promotes tumor growth and invasion by modulating miR-765/KLK4 signaling axis.</td>
<td>(70)</td>
</tr>
<tr>
<td>RP11-766N7.4</td>
<td>↓</td>
<td>Decreases tumor invasion and EMT.</td>
<td>(71)</td>
</tr>
<tr>
<td>FAM225A</td>
<td>↑</td>
<td>Enhances ESCC progression by targeting miR-197-5p and increasing NONO expression</td>
<td>(72)</td>
</tr>
<tr>
<td>LINC01296</td>
<td>↑</td>
<td>Enhances ESCC growth and invasion by downregulating KLF2</td>
<td>(73)</td>
</tr>
<tr>
<td>LINC02820</td>
<td>↑</td>
<td>Enhances ESCC invasion and metastasis by modulating TNFα and enhancing NF-κB cascade.</td>
<td>(74)</td>
</tr>
<tr>
<td>ESCCAL-1</td>
<td>↑</td>
<td>Increases ESCC progression by targeting miR-590/ LDL receptor-related protein-6 (LRP6)</td>
<td>(75)</td>
</tr>
<tr>
<td>HOXC-AS1</td>
<td>↑</td>
<td>Enhances ESCC progression by targeting IGF2BP2/sirtuin 1 (SIRT1)</td>
<td>(76)</td>
</tr>
</tbody>
</table>


### 4. The signaling axis pathways modulated by IncRNAs in EC chemoresistance

Indeed, IncRNAs control the chemoresistance of EC by modulating numerous signaling networks (Table 2) that include:

#### 4.1. Modulation of cellular apoptosis, proliferation, and cell cycle

LncRNAs play a vital action in modulating cellular apoptosis, proliferation, and their relationship to chemoresistance in EC cells (63, 77). For instance, IncRNAs FOXD2-AS1 and NMR improves the EC’s chemoresistance to cisplatin by modulating miR-195/ Protein kinase B (AKT)/ the mammalian target of rapamycin (mTOR) (78) and Bromodomain PHD finger transcription factor (BPTF)/ extracellular regulated kinase (ERK) 1/2/ the matrix metalloproteinase 3/10 (MMP3/10) signaling axis (79), respectively. Besides, in vitro experiment by Fu et al. revealed that Linc01014 increases...
the EC chemoresistance to Gefitinib through targeting phosphoinositide-3 kinase (PI3K)/ AKT/ mTOR axis (80). Moreover, a study by Kang et al., found that lncRNA PART1 improves the EC chemoresistance to Gefitinib by miR-129/ B-cell lymphoma 2 (Bcl2) axis (81). Through targeting DNA methyltransferase (DNMT) and methylenetetrahydrofolate reductase (MTHFR), lncRNA HOTAIR was found to aggravate the EC chemoresistance to 5-FU (82). Remarkably, the Paclitaxel sensitivity of EC may by increased by repression of LncRNA DDX11-AS1 via downregulation of TATA-box binding protein-associated factor 1 (TAF1)/ topoisomerase 2-alpha (TOP2A) (83). On the other hand, Linc00261 inhibits the EC resistance to 5-FU by downregulation the expression of dihydro-pyrimidine dehydrogenase (DPYD) (84).

Interestingly, in vivo and in vitro experiments by Jia et al. revaeled that the NORAD/miR-224-3p/ metadherin (MTDH) axis can reduce the sensitization of ESCC cells to cisplatin by increasing the nucleus building up β-catenin. Besides, in ESCC cells the expression of MTDH was modulated by lncRNA NORAD and miR-224-3p, which shared a similar Argonaute-2 to create an RISC protein (85). Besides, It was reported that EMS and TUG-1 lncRNAs enhances the EC chemoresistance to cisplatin by modulating miR-758–3p/ a nuclear cell cycle regulator WT1 Associated Protein (WTAP) axis (86) and Nuclear factor erythroid 2-related factor 2 (NRF2) protein (87), respectively. The transcription mediator NRF-2 can modulate the production of antioxidant substances (88).

Through targeting DNMT/ glutathione S-transferase P1 (GSTP1), Both Linc01419 (89) and Linc01270 (90) can increase the EC chemoresistance to 5-FU. Indeed, GSTP1 has a vital role in the cellular protection towards oxidative damage (91). On the other hand, Chang et al. demonstrated that lncRNA TUSC7 represses the EC chemoresistance to 5-FU by modulating miR-224/ epidermal growth factor receptor (EGFR)/AKT axis (77).

According to Hu et al. research, the collaboration of the lncRNA CCAT1 and miR-143 axis activates the enzyme Polo-like Kinase 1 (PLK1), that controls the cell cycle and attenuates apoptosis in ESCC. This results in upregulation of Bub1-related kinase (BUBR1) that regarded as a crucial part of the mitotic spindle formation checkpoint, increased cell growth, and resistance to cisplatin (63).

4.2. Modulating of multidrug resistance proteins
Multidrug resistance proteins (MRPs) have been established as ATP-binding cassette (ABC) pumps. As a result of their function as a medicine export pump, the intracellular amount of chemotherapy
medicines is declined, and their cytotoxicity is dropped (92). Adriamycin-resistant EC cells may increase the production of ATP-binding cassette G2 (ABCG2), which is thought to be an inducer of chemoresistance, by secreting linc-VLDLR through extracellular vesicles (93).

4.3. Modulating the repair of DNA damage
Notably, nuclear receptor-binding SET domain protein 2 (NSD2) has been implicated in the repair of DNA deterioration and thus it imparts resistance to chemotherapy. In order for ESCC cells to preserve their resistance to cisplatin, the upregulation of the IncRNA MACC1-AS1 generated by NSD2 is crucial (94).

4.4. Regulation of EMT
The key characteristics of EMT are the lack of cell connection, polarization, the acquisition of migratory and invasive features that result in the formation of mesenchymal stem cells. (95). Several studies have found a relationship between EMT and chemoresistance in a variety of tumor subtypes (96, 97). Through its association with enhancer of zeste homolog 2 (EZH2), linc00152 can stimulate the production of Zinc finger E-box binding homeobox 1 (ZEB1), which in turn increases E-cadherin expression, promoting EMT and EC resistance to oxaliplatin (59).

4.5. Modulation of cancer-associated fibroblasts (CAFs)
A vital component of the cancer stroma known as cancer-associated fibroblasts has been demonstrated to possess a significant role in chemoresistance. In ESCC cells, IncRNA POU3F3 may promote the transformation process of typical fibroblasts into activated CAFs, which in turn improves cellular growth and cisplatin resistance of ESCC cells by upregulating the production of interleukin-6 (IL-6) (98).

4.6. Modulating of autophagy
As a protective measure against detrimental stressful conditions like hypoxia and chemotherapy, the cancer cells adopt autophagy (99). It has been reported that autophagy contributes to IncRNA-mediated chemotherapeutic resistance. In order to improve autophagy while suppressing cellular apoptosis and cisplatin sensitization in EC, Linc00337 may activate E2F4 to improves the gene expression of the intended protein for Xenopus kinesin-like protein 2 (TPX2) and thereby increase a production of autophagy-associated factors (100).
Table 2. The impact of lncRNAs on the chemotherapeutic response of EC

<table>
<thead>
<tr>
<th>LncRNAs</th>
<th>Alteration</th>
<th>Therapeutic impact</th>
<th>Target</th>
<th>System</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOXD2-AS1</td>
<td>↑</td>
<td>Enhances the EC chemoresistance to cisplatin.</td>
<td>miR-195 - AKT/mTOR</td>
<td>In vivo, In vitro, Tissues</td>
<td>(78)</td>
</tr>
<tr>
<td>NMR</td>
<td>↑</td>
<td>Improves the EC chemoresistance to cisplatin.</td>
<td>BPTF/ ERK1/2/ MMP3/10</td>
<td>In vitro, Tissues</td>
<td>(79)</td>
</tr>
<tr>
<td>Linc01014</td>
<td>↑</td>
<td>Enhances the EC chemoresistance to Gefitinib.</td>
<td>PI3K/ AKT/ mTOR</td>
<td>In vitro</td>
<td>(80)</td>
</tr>
<tr>
<td>PART1</td>
<td>↑</td>
<td>Enhances the EC chemoresistance to Gefitinib.</td>
<td>miR-129 - Bcl2</td>
<td>In vivo, In vitro, Clinical</td>
<td>(81)</td>
</tr>
<tr>
<td>HOTAIR</td>
<td>↑</td>
<td>Increases the EC chemoresistance to 5-FU.</td>
<td>DNMT/ MTHFR</td>
<td>In vivo, In vitro, Tissues</td>
<td>(82)</td>
</tr>
<tr>
<td>DDX11-AS1</td>
<td>↑</td>
<td>Enhances the EC chemoresistance to Paclitaxel.</td>
<td>TAF1/ TOP2A</td>
<td>In vivo, Invitro, Tissues</td>
<td>(83)</td>
</tr>
<tr>
<td>Linc00261</td>
<td>↓</td>
<td>Decreases the EC chemoresistance to 5-FU.</td>
<td>DPYD</td>
<td>In vivo, In vitro, Tissues</td>
<td>(84)</td>
</tr>
<tr>
<td>NORAD</td>
<td>↑</td>
<td>Raises the EC chemoresistance to cisplatin</td>
<td>MiR-224–3p - MTDH</td>
<td>In vivo, In vitro, Tissues</td>
<td>(85)</td>
</tr>
<tr>
<td>EMS</td>
<td>↑</td>
<td>Represses the EC sensitivity to cisplatin</td>
<td>miR-758–3p - WTAP</td>
<td>In vivo, In vitro, Tissues</td>
<td>(86)</td>
</tr>
<tr>
<td>TUG1</td>
<td>↑</td>
<td>Represses the EC sensitivity to cisplatin</td>
<td>NRF2</td>
<td>In vitro, Tissues</td>
<td>(87)</td>
</tr>
<tr>
<td>Linc01419</td>
<td>↑</td>
<td>Increases the EC</td>
<td>DNMT/ GSTP1</td>
<td>In vivo,</td>
<td>(89)</td>
</tr>
</tbody>
</table>

chemoresistance to 5-FU.

| Linc01270 | ↑ | Represses the EC sensitivity to 5-FU. | DNMT/ GSTP1 | In vivo, Tissues | (90) |
| TUSC7 | ↓ | Decreases the EC chemoresistance to 5-FU. | miR224/ EGFR/ AKT | In vivo, In vitro, Tissues | (77) |
| CCAT1 | ↑ | Represses the EC sensitivity to cisplatin | miR-143 - PLK1/ BUBR1 | In vivo, In vitro, | (63) |
| LincVLDLR | ↑ | Increases the EC chemoresistance to Adriamycin | ABCG2 | In vitro, Tissues | (93) |
| MACC1-AS1 | ↑ | Increases the EC chemoresistance to cisplatin | Mediated by NSD2 | In vivo, In vitro, Tissues | (94) |
| Linc00152 | ↑ | Raises the EC chemoresistance to Oxaliplatin | EZH2/ ZEB1 | In vivo, In vitro, Tissues | (59) |
| POU3F3 | ↑ | Represses the EC sensitivity to cisplatin | IL-6 | In vitro, Clinical | (98) |
| Linc00337 | ↑ | Increases the EC chemoresistance to cisplatin | E2F4/ TPX2 | In vivo, In vitro, Tissues | (100) |


5. The clinical implications of lncRNAs in EC
The histological examination of tumor tissue is very important before the diagnosis of EC. For small lesions, following histological analysis, endoscopic resection alone may represent suitable therapy if the tumor is small and superficial. Currently, endoscopic biopsy is the gold standard method for diagnosis of early EC; while (endoscopic visualization of a large mucosal mass is nearly pathognomonic of EC, and image-guided biopsy must be performed if metastases are present to confirm diagnosis. The early EC appears endoscopically as superficial plaques, nodules, or ulcerations. Advanced lesions appear as strictures, ulcerated masses, circumferential masses, or large ulcerations (101, 102).

The prognosis of EC is strongly associated with its clinical stage at diagnosis. Endoscopic ultrasonography (EUS) is the most accurate method for staging ESCC patients being regarded for surgery once distant metastases have been excluded by computed tomography (CT) or by integrated fluoro-deoxy glucose positron emission tomography (FDG/PET), while in the case of metastatic lymphadenopathy, the addition of EUS-guided fine-needle aspiration has further improved lymph node staging accuracy and should be performed routinely. Although EUS has a limited role in staging patients post-chemotherapy and/or radiotherapy, it is considered the most sensitive technique for detecting local tumor recurrence (103, 104).

Nowadays, it is critical to develop non-invasive diagnostic methods to diagnose EC rather than invasive techniques. Besides, myriad published studies are addressing the circulating value of IncRNAs in ESCC as a potential non-invasive diagnostic biomarker for EC (105). The results of different reports summarize the diagnostic/prognostic value of IncRNAs in EC in Table 3.

Ghafouri-Fard et al. study has shown the global coding and IncRNA signatures in the discrimination of adjacent noncancerous tissues from the EC cell samples (106). Indeed, IncRNAs are regarded as one of the crucial modulators of cancer and are transcribed prominently in the genome and several conditions. Many experimental and computational reports have described the role of IncRNAs as key protein-coding genes in the initiation and progression of ESCC. By utilizing microarray expression reports for mRNAs and IncRNAs from a large number of ESCC samples, the “Weighted Gene Co-expression Network Analysis” (WGCNA) method made a big coding/non-coding gene co-expression network and discovered an important functional module (107). A study by Hao et al. was the first to introduce ESCCAL-1 as one of the most prominent altered IncRNAs in ESCC specimens (108).
Functional enrichment analysis found that lncRNAs including (LINC00173, RP11-579D7.4, LA16c-325D7.2, RP1-251M9.2, RP5-1172N10.2, RP11-259O2.2, and RP11-89N17.4) might debate the cell cycle modulation, histone methylation, and cancer-associated signaling mechanisms including (PI3K/AKT and hypoxia-inducible factor-1) in the patient’s survival with ESCC (23). Additional evaluation in recent in-silico enrichment analysis implied the possible participation of GK3P and RPL34-AS1 lncRNAs in the development of EC after RNA sequencing data analysis of ESCC samples provided by the Cancer Genome Atlas database (109).

The integrated bioinformatics analysis was utilized to recognize differentially expressed lncRNA genes (DELGs). They have recognized 259 lncRNAs between the early and advanced stages of ESCC samples. In addition to evaluations that identified another 5 lncRNAs, including (AC098973, RP11-51M24, RP11- 834C11, LINC00471, and RP1-124C) in which their expression could predict tumor behavior in ESCC patients and control cell cycle and DNA replication (110). Several reports have identified 6 lncRNAs whose expressions were correlated with the patient’s outcome. RP11-1L12.3 and HERES lncRNAs were found to increase the survival of the disease, while CTD-2319I12.1, RP11-114H23.1, and LINC00330 had a contrasting impact. Based on the expression of these lncRNAs, samples of ESCC could be classified into 4 classes correlated with smoking history and/or patient survival (106). A comprehensive analysis of lncRNAs profile identified 7 up-regulated lncRNAs and 21 down-regulated lncRNAs whose signature was defined as poor survival (111).

The study by Liu et al. applied the in-silico enrichment analysis method to recognize the altered lncRNA-miR-mRNA networks in EC samples. These dysregulated genes were enriched in extracellular matrix assembly, chromosome separation, cell cycle, and the cyclic GMP-protein kinase G signaling pathway (112), while Wang et al. have revealed that the serum level of HOTAIR lncRNA has a powerful diagnostic value that could discriminate cases from healthy controls with 0.79 area under the curve (AUC) at a cut off-value of 0.094 with 90% specificity and 56% sensitivity, as it was found to be upregulated in the serum samples of the cases group compared to healthy controls, in addition to their expression levels being correlated with metastasis (113).

Table 3. The clinical relevance of lncRNAs in EC

<table>
<thead>
<tr>
<th>LncRNAs</th>
<th>no. of (EC specimens + Kaplan–Meier analysis)</th>
<th>Univariate Cox regression</th>
<th>Multivariate Cox regression</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>controls)</td>
<td>93</td>
<td>( \uparrow ) Expression was correlated with clinical stage, TNM classification, vital status, and histological recognition.</td>
<td>It regarded as independent contributor for overall survival (OS)</td>
<td>(114)</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>HOTAIR</td>
<td>100</td>
<td>( \uparrow ) Expression with shorter survival</td>
<td>Correlated with lymph node metastasis, clinical stage, histological discrimination, TNM classification.</td>
<td>(115)</td>
</tr>
<tr>
<td></td>
<td>137</td>
<td>---</td>
<td>Prognostic independent indicator for metastasis and death</td>
<td>(42)</td>
</tr>
<tr>
<td>MALAT 1</td>
<td>106</td>
<td>( \uparrow ) Expression with shorter survival</td>
<td>---</td>
<td>(116)</td>
</tr>
<tr>
<td></td>
<td>132</td>
<td>---</td>
<td>Independent predictor for EC patients’ survival.</td>
<td>(117)</td>
</tr>
<tr>
<td>FOXCUT</td>
<td>82</td>
<td>( \uparrow ) Expression with worse prognosis</td>
<td>---</td>
<td>(118)</td>
</tr>
<tr>
<td>NORAD</td>
<td>106</td>
<td>( \uparrow ) Expression with poorer OS and disease-free survival (DFS)</td>
<td>Risk factor for OS in patients with ESCC</td>
<td>(119)</td>
</tr>
<tr>
<td>NEAT1</td>
<td>96</td>
<td>increase Expression with shorter OS</td>
<td>Its expression correlate with TNM stage, tumor size, and lymph node metastasis.</td>
<td>(120)</td>
</tr>
<tr>
<td>linc00460</td>
<td>65</td>
<td>( \uparrow ) Expression with poorer OS</td>
<td>---</td>
<td>(121)</td>
</tr>
<tr>
<td>PCAT-1</td>
<td>130</td>
<td>( \uparrow ) Expression with a poorer survival time</td>
<td>Independent predictor of poor survival</td>
<td>(122)</td>
</tr>
<tr>
<td>BANCR</td>
<td>142</td>
<td>( \uparrow ) Expression with a poorer DFS and OS</td>
<td>Expression of BANCR among cases with ESCC following esophagectomy following esophagectomy was independent indicator of a worse prognosis.</td>
<td>(123)</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>( \uparrow ) Expression with poorer prognosis</td>
<td>Independent prognostic indicators for the OS</td>
<td>(124)</td>
</tr>
<tr>
<td>LncRNA</td>
<td>66</td>
<td>↑ Expression with a poorer prognosis</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>-------------------------------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>UCA1</td>
<td>87</td>
<td>↑ Expression with a poorer OS and DFS</td>
<td>---</td>
<td>Its expression increases after esophagectomy. Independent prognostic factors for OS</td>
</tr>
<tr>
<td>ZEB1-AS1</td>
<td>78</td>
<td>Has a worse prognosis than those with diminished expression.</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DUXAP8</td>
<td>104</td>
<td>↑ Expression with a lower OS</td>
<td>Identified as prognostic factors</td>
<td>Correlated with OS</td>
</tr>
<tr>
<td>PVT1</td>
<td>92</td>
<td>↑ Expression with a lower OS time</td>
<td>---</td>
<td>Independent prognostic factors for the OS</td>
</tr>
<tr>
<td>SPRY4-IT1</td>
<td>218</td>
<td>↑ Expression but with poor prognosis, particularly for cases with moderate/ well differentiation</td>
<td>↑ Expression correlated to poor prognosis</td>
<td>Independent predictors with poor survival</td>
</tr>
<tr>
<td>TUG1</td>
<td>142</td>
<td>↓ Expression with a poorer OS and DFS</td>
<td>↓ Expression was correlated with CRT response</td>
<td>Reduced expression after esophagectomy. Regarded as independent predictor with poor survival &amp; independent prognostic factors that could affect the OS and DFS</td>
</tr>
</tbody>
</table>


6. Conclusion

In summary, mounting evidence indicates that LncRNAs play a significant modulatory role in the etiology of esophageal cancer by controlling important physiological processes involved in cancer
cell development and invasion. Besides, IncRNAs have a significant relevance in EC diagnosis, prognosis, and therapy response. As a result, targeting IncRNAs may be a potentially effective treatment to improve the outcomes of EC patients.

Acknowledgments
Not applicable

Competing interests
The authors report they have no conflict of interests.

References


