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ABSTRACT 

Our world is facing an enormous disaster due to spreading of the life-threatening 

bacterial infections, especially after the spread of multidrug-resistant Gram-negative bacteria 

(MDR-GNB), including those resistant to known antibiotics such as fluoroquinolones, 

aminoglycosides, broad-spectrum penicillins, and other β-lactams antibiotics, such as 

monobactams and carbapenem. In addition, the a shortage of the production of new drugs that 

are able to overcome these life-threatening infections. This disaster has pushed the medical 

profession to re-use colistin, the old antibiotic, as the last hope drug for the treatment of 

these fatal infections. Colistin was discovered in 1950 and was rejected in most parts of the 

world due to its toxicity including nephrotoxicity. Unfortunately, the resistance against 

colistin has been discovered and this resistance has spread globally. Colistin resistance includes 

both intrinsic resistance and acquired resistance. The mechanisms of acquired colistin resistance 

were linked only to the chromosomal gene mutations until the discovery of the colistin 

resistance gene named the mobile colistin-resistant (mcr) gene which is mediated by the 

plasmid. In this review, we discuss the history, chemistry, spectrum of activity, mechanism of 

action, clinical uses and indications, adverse effects, mechanisms of colistin resistance, and 

antibiotic combinations with colistin. 
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Introduction 

The increased resistance to antibiotics that launched among the GNB in the 1970s has 

become a serious global disaster [1]. The chief issue is that there is a shortage of probable 

alternatives that are capable of defeating life-threatening pathogens. Indicating that the resistance 

to the antibiotics could become a universal disaster that shows no signs of resolving [2]. Our 

world is facing a tremendous and growing threat from the rise of bacteria that are particularly 

resistant to nearly all existing antibiotics [2-4]. Antibiotic resistance has been referred to as “the 

silent tsunami facing modern medicine”. The most urgent issue is the increasing incidence of 

life-threatening antibiotic-resistant Gram-negative (GN) bacterial infections. The rise of MDR-

GNB and increasingly pan-drug resistant (PDR) strains has affected practice in every field of 

medicine [5, 6]. Unfortunately, the accomplished efforts in pharmaceutical manufacturing are not 

enough to resolve the bacterial resistance disaster. The shortage of newly approved antibiotics 

for these superbugs due to the deficiency in antibiotic discovery has pushed the medical 

community to reuse the older antibiotics that were limited in their use in the past, in particular, 

polymyxins, The reemerged colistin has been used mainly against fatal infections induced by 

MDR GNB [1]. Polymyxin antimicrobials are a structurally different class of cyclic non-

ribosomal oligopeptides, which include (polymyxins A, B, C, D, and E), with polymyxin B and 

colistin (polymyxin E) being the only polymyxins available in the market [1, 7, 8]. Colistin has 

become the last resort antimicrobial is capable of defeating MDR GNB [9, 10]. 

 

1. Colistin: 

1.1 History and discovery: 

In Japan in 1949, Koyama discovered colistin from a flask of spore-forming soil 

bacterium, Bacillus polymyxa subsp. colistinus [11]. Colistin was utilized in both human and 

veterinary medicine [12, 13]. 

Colistin was gradually rejected in the 1980s from the majority of world regions due to its 

nephrotoxicity. Subsequently, treatment with colistin during the past two decades was restricted 

to the lung infections caused by MDR-GNB in cystic fibrosis (CF) patients [1].  
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1.2 Chemistry of colistin: 

Colistin molecule consists of a cyclic cationic polypeptide attached through α-amide 

linkage to a chain of fatty acids. Its molecular weight is around 1750 Daltons. The amino acid 

constituents of colistin are L-Threonine, D-Leucine, and L-2, 4-Diaminobutyric acid (Dab). The 

chain of fatty acids may be 6-methyl-octanoic acid or 6-methyl-heptanoic acid for colistin A or 

colistin B, respectively [1]. 

The colistin antibacterial activity depends on its chemistry. The amino groups of the 

amino acid Dab at physiological pH are ionized, and thus colistin carries a net-positive charge, 

which represents a critical property to interact with the phosphate groups are present in the 

bacterial lipopolysaccharide (LPS) which is negatively charged. In addition, colistin possesses a 

chain of hydrophobic fatty acyl, which also can interact with the LPS and cell membranes [14]. 

Colistin has two forms available for the treatment of GN bacterial infections. The first is 

colistin sulfate (CS), which is used for topical and oral use. The second is colistimethate (colistin 

methanesulfonate sodium) (CMS), which is a prodrug that is used by inhalation and parenteral 

routes. CMS has low toxicity when compared to CS [15]. 

1.3 Colistin spectrum of activity: 

Colistin is bactericidal toward most GN aerobic bacilli, including Escherichia coli, 

Acinetobacter baumannii, Klebsiella species, Pseudomonas aeruginosa, and most of the 

Enterobacteriaceae family. However, colistin is ineffective against Mycoplasma, Gram-positive 

bacteria and other intrinsically resistant bacteria, such as Morganella morganii,, Serratia 

marcescens, Providencia spp., Proteus spp., Vibro cholera, Brucella, Legionella, 

Campylobacter, Neisseria spp., Chromobacterium, Edwardsiella spp., Burkholderia cepacia,  

some Aeromonas spp, anaerobic GN cocci, mammalian cells and eukaryotic microbes [16-18]. 

1.4 Colistin mechanism of action: 

1.4.1 Direct antibacterial activity:  

Colistin primarily destroys bacteria by disrupting their inner membrane (IM) and outer 

membrane (OM) as colistin has a detergent-like action, which increases the membrane’s 

permeability. Colistin direct action occurs via a recognized model known as “self -promoted 
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uptake”. In this model, the amphipathic property of colistin is vital for the colistin molecules 

uptake via the OM via the OM [16].  

In the “self-promoted uptake” model, the cationic part of colistin, which include ionized 

Dab residues, primarily binds to the anionic phosphate groups of the lipid A moiety of the OM 

via electrostatic interactions. Colistin molecules then competitively displace the two divalent 

cations Ca+2 and Mg+2, as colistin has a higher affinity toward LPS than Ca+2 and Mg+2 [13]. The 

attachment of colistin molecules to the LPS lipid A moiety and its insertion into the OM leads to 

the destabilization of LPS moieties and impairment of the OM, resulting in an increase in colistin 

uptake [1, 19]. The hydrophobic part of colistin insertion in the OM creates cracks in the 

membrane, which allows the “self-promoted uptake” process to occur [20]. Finally, it leads to 

lysis of the bacterial membranes and then leakage of the cytoplasmic and periplasmic contents 

and cell death. Remarkably, this process is independent of the entrance of colistin into the cell  

[10, 18].  

1.4.2 Anti-endotoxin colistin activity:  

Colistin has effective anti-endotoxin activity, as the lipid A fragment of the GNB LPS 

forms endotoxin. Colistin diminishes the endotoxin action by attaching and neutralizing LPS 

moieties. The in vivo value of this mechanism for the antibacterial activity is that it inhibits the 

ability of endotoxin to produce shock by releasing cytokines.    Indeed, the exact mechanism of 

this suppressing action is still unclear [1, 21]. 

1.4.3 Vesicles contact pathway: 

Colistin also produces antibacterial activity via a mechanism termed vesicle-vesicle 

contact. After crossing the OM, colistin attaches to phospholipid vesicles, resulting in the union 

of the inner part of the OM with the outer part of the cytoplasmic membrane. This fusion 

stimulates phospholipid exchange, causing phospholipid loss and resulting in osmotic imbalance 

and finally lytic cell death [16, 20].  

1.4.4 Hydroxyl radical death pathway:  

The pathway of hydroxyl radical involves the formation of reactive oxygen species, 

which induce oxidative stress. In general, the superoxide anion (O2
-) is produced when colistin 

crosses the OM and IM. Following that, O2
- is converted into hydrogen peroxide (H2O2). H2O2 
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then oxidizes ferrous (Fe2+) into ferric (Fe3+), inducing oxidative injury in the bacterial DNA, 

lipids, and proteins, which finally leads to cell death [13, 22]. 

1.4.5 Inhibition of respiratory enzymes: 

It is a secondary mechanism of colistin action that occurs by inhibition of a vital 

respiratory enzyme, type II NADH-quinone oxidoreductase in the respiratory cycle. This 

mechanism has been identified in E. coli, K. pneumoniae, and A. baumannii [18, 23].  

1.5 Colistin clinical uses and indications: 

The Food and Drug Administration (FDA) approved colistin as an antimicrobial agent for 

treating infections caused by GNB. Colistin is active against various types of diseases, including 

Urinary tract infections (UTIs), eye infections, and ear infections. Colistin is also used for 

decontamination of the bowel [16, 24].  

CMS is administrated by inhalation and intravenously in order to manage P. aeruginosa 

infections in CF patients [25]. Also, colistin has been used to cure bacteremia and ventilator-

associated pneumonia caused by MDR GNB [26]. 

Moreover, CMS is effective in the ventriculitis treatment that is caused by MDR A. 

baumannii [27].  In veterinary medicine, polymyxins are given to animals on almost all 

continents, mainly to treat digestive disorders in addition to growth promotion [28].  

1.6 Colistin adverse effects: 

Colistin produces toxicity, such as nephrotoxicity and neurotoxicity, as well as 

neuromuscular blockage, which sometimes leads to death. Consequently, colistin usage was 

limited in the 1980s, except for the treatment of CF infectious disease [29, 30]. 

The nephrotoxicity was noticed to be prevalent in patients over 60 years old and is 

associated with a low glomerular filtration rate. Therefore, monitoring kidney function in 

patients receiving colistin is very important [31]. Higher colistin doses are proportional to the 

high rate of nephrotoxicity [32]. However, in recent studies, the nephrotoxicity incidence is less 

frequent and less severe if compared to the old studies. Additionally, the colistin neurotoxic 

outcome is usually not severe and resolves after immediate cessation of the drug. Moreover, 

neuromuscular blockage and apnea cases were not present in the latest literature [10, 33]. 
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1.7 Mechanisms of colistin resistance: 

Generally, GNB can evolve resistance against colistin intrinsically or by adaptation 

mechanisms that include chromosomal gene mutation and horizontally acquired resistance genes 

[34, 35]. Colistin has cross-resistance with polymyxin B [1, 19]. 

1.7.1 Intrinsic resistance: 

Natural resistance to colistin is present in many organisms, and those organisms have 

been used to understand the mechanisms of colistin resistance besides its mode of action [36, 

37]. Bacterial species that possess intrinsic resistance to colistin include  Providencia spp., 

Proteus spp., Neisseria spp., Burkholderia cepacia, and other species [17]. 

The polymyxins attach and penetrate the phosphatidylethanolamine (PE) monolayers but 

do not affect methylated PE as in Proteus species. Methylated PE has been confirmed by the 

phenotypic change of polymyxin B resistant Proteus mirabilis to become sensitive by using a 

sulfadiazine medium, this change may be due to the blockage of the synthesis of the methylated 

PE [36]. 

Another study stated that resistance to polymyxins in Serratia marcesens and P. mirabilis 

is due to bacterial LPS modification through cationic substitution. This is linked to 

arnBCADTEF operon expression and the eptB gene. After their expression, the 

phosphoethanolamine (PEtN) and/or the 4-amino-4-deoxy-L-arabinose (L-Ara4N) cationic 

groups are added to the bacterial LPS, this addition leads to a decrease in the bacterial LPS 

negative charge which prevents colistin attachment to the bacterial LPS and subsequently 

prevents colistin action [38-40]. The presence of RppA/rppB two-component system (TCS) has 

also been discovered to play a role in the arnBCADTEF operon activation [41, 42]. Studies on S. 

marcescens arnBCADTEF operon have revealed that arnC and arnB mutants showed reduced 

resistance to colistin. The minimum inhibitory concentration (MIC) of the arnC and arnB 

mutants was reduced from 2,048 to 2 μg/ ml [43]. In addition, a putative acetyltransferase is 

present in P. mirabilis, which also takes a part in the addition of L-Ara4N to lipid A part of the 

bacterial LPS [44]. 
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1.7.2 Acquired resistance: 

The polymyxins acquired resistance mechanisms may be plasmid-mediated or 

chromosomally mediated. Resistance to colistin has been exclusively associated with 

chromosomal gene mutation until 2015 [45, 46]. Resistance mechanisms mediated by the 

chromosomes can be briefly described as follows: (I) LPS modifications via cationic moieties . 

(II) LPS losses. (III) Efflux pump systems overexpression. (IV) Capsular overproduction in some 

GNB. 

I.  LPS modification enzymes: 

The main strategy that permits the GNB to overcome the bactericidal activity of colistin 

depends on making changes in the LPS of the GNB, by decreasing its negative charge, thus 

prohibiting colistin binding and consequently colistin action [18, 47]. This could be gained by 

substituting the phosphate groups in the LPS with the cationic groups L- PEtN and/or Ara4N [13, 

16]. The expression of nearly all genes that modify the LPS is under the control of various TCS 

[48].  

Two of the most broadly studied TCS are the PhoP/PhoQ (PhoPQ) and PmrA/PmrB 

(PmrAB) systems whose regulations and functions were found to be overlapped [15]. 

PmrA/PmrB and PhoP/PhoQ TCSs both have a sensor kinase, that can sense the signals of the 

environment, such as the decrease in Mg+2 and Ca+2 ions of the OM, thus the presence of 

colistin, then they alter the TCSs expression pattern, that modulates the expression of colistin 

resistance genes [49, 50]. The upregulation of TCSs by mutations in their regulatory systems 

results in colistin resistance by extra cationic moieties in addition to the LPS [48]. The PhoQ 

protein of the PhoP/PhoQ TCS acts as a repressor of transcription of PhoP activity. Mutations in 

PhoQ permit the PhoP to induce expression of arn operon leading to colistin resistance. This 

clarifies that the inactivation of PhoP by mutations completely restores the activity of colistin 

[48]. 

Genes that modify bacterial LPS involve the pmrCAB operon, which encodes for 3 

proteins: the PmrB, the sensor kinase, the PmrA, the response regulator, and the PmrC, the PEtN 

phosphotransferase. The PmrB protein is a sensor tyrosine kinase that stimulate the response 

regulator, PmrA. PmrA then triggers the transcription of PmrC, which works as PEtN 

phosphotransferase, which is responsible for the PEtN cationic compound addition to bacterial 

LPS [18, 49, 50]. 
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The pmrE gene, in addition to the pmrHFIJKLM operon, also takes part in the bacterial 

LPS modification. They participate in the L-Ara4N moiety synthesis and its adherence to the 

lipid A part of the bacterial LPS [49]. The mgrB gene encodes a small regulatory protein, which 

decreases the PhoQ kinase activity. Inactivated mgrB gene led to up-regulation of PhoP/PhoQ 

expression and consequently increased the colistin resistance [51, 52] In P. aeruginosa, there are 

several TCSs including ParR/ParS, CprR/CprS, ColR/ColS as well as PhoPQ and PmrAB. These 

TCSs activate the arnBCADTEF operon which leads to bacterial LPS modification [17, 53, 54]. 

A study on pmrCAB and lpxACD operons that present in colistin susceptible A. 

baumannii isolates, revealed the possibilities of mutations in both operons without development 

of colistin resistance. This alerts us to the significance of interpreting mutated operons about 

susceptible colistin isolates of the identical sequence type and global clones (ST/GC) content 

[55]. 

A study on Aeromonas hydrophila revealed a novel mechanism for colistin resistance. 

These mechanisms were able to generate low to intermediate-level colistin resistance. First, 

EnvZ/OmpR TCS has the ability to upregulate the arnBCADTEF operon expression, this 

mediates the bacterial LPS modification. Second, EnvZ/OmpR TCS regulates the auto-

transporter gene3832 expression, which was able to decrease the OM permeability as a response 

to the presence of colistin. Third, the removal of envZ/ompR TCS stimulates the PhoP/PhoQ 

TCS, which also takes a part in the development of colistin resistance. Fourth, the mlaFD173A 

gene mutant provides a high level of colistin resistance via the upregulation of the Mla gene 

pathway, which is an OM lipoprotein-encoding gene [56]. 

Another mechanism for colistin resistance in E. coli was attributed to RpoE stress system, 

which is able to mediate the resistance against colistin without affecting the lipid A [57]. Also, a 

degrading colistin protease discovery revealed the diversity of resistance mechanisms against 

colistin [58]. 

 

An important resistance pattern is polymyxin heteroresistance.  heteroresistance is the 

result of different responses within the same population of bacterial cells to antibiotics. This 

poorly understood phenomenon complicates the investigations of antibiotic resistance. The 

heteroresistance phenomenon occurs when a small bacterial subpopulation has different degrees 

of polymyxin susceptibility [59, 60]. Resistance to polymyxins can be gained phenotypically by 
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polymyxin-heteroresistant bacteria. The MIC in the majority of these bacteria is ≤ 2 mg/l, while 

these subpopulations are capable of surviving at polymyxins concentrations>2 mg/l. The 

heteroresistance frequency against polymyxin in P. aeruginosa is rare, but it has been found in 

MDR A. baumannii and K. pneumonia [16].  

Heteroresistance to polymyxins was suspected to be due to mutations in chromosomal 

genes, such as lipid A biosynthesis genes, lpxA, lpxC, and lpxD, or by the addition of L-Ara4N 

[61, 62]. It also can be caused by mutations in PmrAB TCS in A. baumannii [63]. 

II. LPS Loss 

LPS loss was discovered in A. baumannii. This effect occurs by inhibiting the 

biosynthesis of lipid A through lpxC, lpxA, and lpxD gene mutation. These mutations lead to 

complete lipid A loss, which prevents the polymyxins OM interaction and subsequently colistin 

activity [62]. 

III. Efflux pumps  

Generally, the efflux pump activation results in the development of resistance to various 

antibiotics including, colistin. Different efflux pumps are present in bacteria, such as the Sap 

(sensitive antimicrobial peptides) proteins, KpnEF, the AcrABTolC complex, BrlR has been 

detected. The Sap proteins contain five different proteins which are encoded by the sapABCDF 

operon [45]. The efflux pumps systems MtrC-MtrD-MtrE, KpnEF, AcrAB-TolC, RosAB, 

VexAB, and NorM have been also defined to allow tolerance of bacteria against polymyxin B, 

but these pumps influence polymyxin tolerance in a small number of cases [64]. In addition, the 

efflux pumps AcrAB confer polymyxin resistance to K. pneumoniae [18, 65]. The mutations in 

AcrAB and kpnEF, efflux pumps, have been reported to be able to decrease the colistin MIC by 

2-fold and increase survival at low polymyxin concentrations [18].  

The attention received to efflux pumps' role in the development of resistance to colistin is 

less than other resistance causes. The inhibitors of the efflux pump 1-(1-naphthylmethyl)-

piperazine (NMP) and Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) have the ability to 

reverse the colistin resistance, which suggests that the importance of the efflux pumps role in the 

development of colistin resistance [66, 67]. Overexpression of efflux pumps in addition to LPS 

modification and their regulators are important mechanisms of the resistance against colistin in 

mcr-negative K. pneumoniae [68]. 
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IV. Capsular overproduction 

Capsular overproduction mechanisms as in Klebsiella spp. involve the capsule synthesis 

regulator, this regulator modifies the expression of the capsular polysaccharide biosynthesis, 

leading to an increase in capsule production that hides the site to which polymyxin bind and thus 

confers resistance to colistin. The capsule synthesis regulator also regulates PmrA/PmrB and 

PhoP/PhoQ TCSs and it thus indirectly modifies the bacterial LPS [69]. 

In China, the first colistin resistance gene mediated by plasmid was found in 2015. This 

gene was designated as a mobile colistin resistance (mcr-1) gene. It was identified in E. coli 

isolate. The mcr-1 gene has become a significant cause for the spread of colistin resistance 

between several GNBs and helped in explaining the unknown colistin resistance mechanisms 

[35]. 

 After its first discovery, the mcr-1 dissemination among several Enterobacteriaceae 

species was detected. Worldwide, the mcr-1 gene has been reported in over 30 nations in five 

continents [2, 70-72]. It has been found in several isolates from farms, wild animals, foods, 

humans, aquatic environments, and hospital sewage [47, 48, 73]. The mcr-1 gene has been 

experimentally transferred in the lab from E. coli to P. aeruginosa [48, 70, 74]. The mcr-1 gene 

dissemination worldwide proposes that veterinary use has probably sped up its dissemination. 

This is in agreement with the hypothesis which stated that: livestock is the primary cause of mcr-

1 dissemination [71].  

The mcr-1 gene activity leads to an increase in the MIC of colistin by 4-8 fold, which 

proves that the mcr-1 gene alone, without any other resistance genes, is sufficient to produce 

resistance against colistin [18]. MCR-1 protein is a PEtN transferase enzyme that belongs to the 

alkaline phosphatase superfamily “YhjW/YjdB/YijP” [74]. The MCR-1 protein leads to the 

addition of PEtN molecule to the lipid A of the bacterial LPS, this leads to an increase in the 

positive charges on the bacterial LPS and subsequently reduces the colistin binding to the 

bacterial LPS [2, 19, 35, 47]. The MCR-1 amino acid sequence analysis revealed that MCR-1 is 

related to the pmrC, the PEtN transferases, which are present in Paenibacillus spp. [47]. Also, 
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MCR-1 is similar to the PEtN transferases, from Campylobacter jejuni and LptA from Neisseria 

meningitidis [35, 75]. 

The MCR-1 also interacts with bacterial membrane proteins, a major six proteins were 

identified, including the stress response proteins SspB (stringent starvation protein B) and DnaK 

(chaperone protein), ribosomal proteins (RpsE, RpsJ, and RpsP), and the transcriptional 

regulation protein H-NS were found to be a site of MCR-1 protein interaction, these membrane 

proteins were identified in E. coli strains including, E. coli  BL21 (DE3) (pET28a-mcr-1), E. 

coli DH5α (pUC19-mcr-1), and E. coli BL21 (DE3) (pET28a-mcr-1-200). These interacting 

proteins with MCR-1 were primarily involved in RNA degradation and ribosome activity. In 

addition, the AcrA and TolC, efflux pumps also take a part in MCR-1 interaction. This proves 

that the efflux pumps involved in  promoting colistin resistance which mediated by mcr-1 gene 

[76] 

The transferable resistance genes of colistin have extended more away from the mcr-1 

gene to include many novel alleles. Nine alleles for the mcr-1 gene have been reported, 

including; mcr-2 [75], mcr-3 [77], mcr-4 [78], mcr-5 [79], mcr-6 [80], mcr-7 [81], mcr-8 [82], 

mcr-9 [83], and the recently detected mcr-10 [84] 

Even though all alleles of mcr have been categorized as gene encoding for PEtN 

transferases, they have commonly conserved amino acid moieties and they share variable 

similarity degrees in their amino acid sequences. Thus this amino acid variability signifies 

different origins of the resistance gene [79]. Investigations of the MCR protein sequences 

revealed that the MCR-1 protein has amino acid sequence similarity with, MCR-2 (81%), MCR-

3 (34%), MCR-4 (33%), MCR-5 (31%), MCR-6 (82%), MCR-7 (29%), and MCR-8 (31%) [85]. 

Three-dimensional (3D) structural models of MCR-1 to MCR-9, presented that MCR-3, 4, 7, and 

9, are having a great degree of similarity at their structure level [83]. 

The most prevalent mcr gene among Enterobacteriaceae is the mcr-1 [35, 48, 71]. The 

mcr-2 gene was detected in E. coli isolated from cattle and pigs in Belgium [75]. The mcr-3 gene 

was identified in an E. coli isolate from a swine specimen in China [77]. The phylogenetic 

analysis revealed that the mcr-3 gene is different from mcr-1 but mcr-3 is related to PEtN 

produced from Aeromonas spp. [47]. Sequence alignment recommended that the mcr-3 gene has 
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a higher similarity to the EptA gene (53.1%) than to mcr-1 (44.1%) [15]. The mcr-3 gene 

encodes for a weak form of MCR-like enzyme and its presence with mcr-1 gene does not give a 

considerable additive on colistin resistance [70].  

The mcr-4 gene was first identified in Salmonella enterica in Italy isolated from a 

specimen of a pig [78, 86]. Amino acid sequence analysis represented that the MCR-4 has 

similarity to MCR-1 (33%), MCR-2 (35%), and MCR-3 (49%) [47]. The mcr-5 gene was first 

identified in Germany in S. paratyphi B isolated from poultry [79]. Protein analysis revealed that 

it has sequence homology with MCR-1 (36.11%), MCR-2 (35.29%), MCR-3 (34.72%), and 

MCR-4 (33.71%) [15].  The mcr-6 gene was discovered in Moraxella spp. which was present in 

pig isolates from Britain [80]. The mcr-7 gene was discovered in K. pneumoniae which was 

isolated from chicken birds in China [81]. 

The mcr-8 gene was discovered in K. pneumoniae [82]. The mcr-9 gene was isolated 

from Salmonella typhimurium. Examinations of mcr-9 genetic environment has revealed that the 

MCR-9 amino acid sequence is closely related to those of MCR -3 and MCR -7 [83]. 

The novel mcr-10 gene was discovered in China in Enterobacter roggenkampii. The 

novel MCR-10 identity of amino acid with MCR-1 (29.31%), MCR-2 (27.09%,), MCR-3 

(61.60%), MCR-4 (42.49%), MCR-5 (28.94%), MCR-6 (26.53%), MCR-7 (58.26%), MCR-8 

(35.81%), and MCR-9 (82.93%) [84]. 

The mcr-1 gene was discovered in an IncI2 plasmid termed pHNSHP45 (64015 bp) [35, 

48, 71]. After that, many mcr-1 harboring plasmids have been identified, which belong to various 

groups with different sizes ranging between 58 and 251 kb [18], including IncHI2 [87], IncX4 

[74], IncP [73], IncY, IncK2, IncF, IncFIB, IncFI, IncFII [70], IncQ, and IncN [71] plasmids. 

Two different types of plasmids harboring the mcr-1 gene have been confirmed to occur together 

in an E. coli isolate, such as the pGD65-4, IncI2, and pGD65-3 plasmids [72]. 

1.8 Colistin in combination with other antibiotics: 

A synergistic effect has been determined in vitro from colistin combination with 

carbapenems in carbapenem-resistant GNB [88]. Also, there was evidence of synergy with 

imipenem against A. baumannii [89-91], P. aeruginosa [92], and Enterobacter cloacae [93]. In 

addition, synergy was detected against A. baumannii, P. aeruginosa, E. coli, and K. pneumoniae 
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with doripenem [94-96]. Moreover, synergy with rifampin and ceftazidime against P. aeruginosa 

and A. baumannii has been submitted [97-100]. Other studies verified significant synergy 

between colistin and glycopeptide against A. baumannii [101, 102]. 

Sundaramoorthy et al. approved the activity of ursolic acid, which potentiated the colistin 

bactericidal effect. Ursolic acid reduced the bacterial bioburden in combination with colistin, by 

1–1.58 log fold. Mechanistic explorations revealed that the colistin efflux was inhibited by the 

action of ursolic acid. Also, ursolic acid enhances OM permeability, which plays a role in the 

facilitation of colistin attack on OM and IM. Ursolic acid when tested in zebrafish it was non-

toxic [67] 

In the study of Zhou et al., they checked the activity of osthole compound against 

colistin-resistant E. coli and K. pneumoniae, in-vitro, in addition to in-vivo, in an infection model 

of a mouse. The bacterial strains used harbored mcr-1 gene. The reported results showed 

promising results in overcoming the colistin resistance. The activity of combination was capable 

of preventing the bacterial growth rather than the individual compounds [103] 

In the Hanpaibool et al. study, they tested 4 different pyrazolone compounds in vitro 

against E. coli strain that harbors mcr-1 gene. They stated that the pyrazolones compounds were 

found to be effective in lowering the MIC of colistin in the mcr-1 harboring colistin-resistant E. 

coli strain [104] 

The saturated fatty acids (SFAs) such as sodium caprate (SC), significantly potentiate the 

colistin activity toward GNB harbor mcr genes. Colistin and SFAs together efficiently inhibit the 

biofilm formation and elimination of matured biofilms. Mechanistically, the SFAs addition to 

colistin, reduce bacterial LPS modification by encouraging LPS biosynthesis, as well as 

inhibiting the MCR enzyme activity. This combination was tested in vivo in animal models 

infected by mcr-positive GNB and it exhibited an effective result [105]. 

Curcumin and colistin delivery in liposomes encapsulating the combination (Lipo-cc). 

The Lipo-cc antibacterial activity against colistin-resistant GNB was confirmed, which was more 

effective than the mono curcumin and colistin compounds. Mechanistically, the Lipo-cc was able 

to restore the colistin affinity for the bacterial membrane. In addition, lipo cc improves the 

curcumin uptake, which affects the efflux pump leading to a reduction in its activity. The lipo-cc 

does not show any toxicity and its therapeutic efficacy was confirmed in an infection model 

[106]. 
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The disulfiram (DSF), the alcohol-abuse drug, has a powerful antibiotic adjuvant activity, 

which enhances the carbapenems as well as colistin activity toward New Delhi metallo-β-

lactamase (NDM) and MCR-producing GNB. Mechanistically the studies show that DSF 

improves colistin activity as DSF has the ability to increase the harmful action of colistin on cell 

membranes, in addition to disruption of the metabolism of GNB. The synergistic efficacy was 

evaluated in animal models and the combination has effectively cured MDR GN bacterial 

infections in vivo [107]. 

Selenium nanoparticles and colistin combination were tested in-vitro on PDR A. 

baumannii to test their activity together. The combination has a strong synergistic effect against 

colistin-resistant A. baumannii [108]. 

A nanocomplex of CMS with guanidinium polymer pEt_20 nanopolymer (NP) (CMS-

pEt_20 NP) was developed to reverse the resistance against colistin. The CMS-pEt_20 NP 

enables colistin resistance reversal in addition to, full eradication of mcr-positive GNB. The 

mono-treatment at equivalent doses with polymer or colistin didn’t exhibit antibacterial activity. 

Mechanistically, studies revealed that the CMS-pEt_20 NP improves CMS affinity for the 

altered GNB membrane that is resistant to colistin. This revives the damaging property of 

colistin to cell membrane. The improved membrane permeability, which is caused by CMS, 

promotes pEt_20 influx which generates intracellular reactive oxygen species stress, that results 

in eliminating the colistin-resistant GNB. More importantly, the synergistic efficacy was 

evaluated in infected animal models with complete mouse survival. Furthermore, the 

nanocomplex is safe both in-vitro and in-vivo [109].  

Gallium nitrate (GaNt), one of the antimicrobial candidates, shows a potentiating effect 

on the activity of colistin toward clinical isolates of MDR K. pneumoniae. This significant 

increase in colistin antimicrobial activity was confirmed in-vitro and in-vivo using a murine lung 

infection model. Mechanistically, GaNt represses the antioxidant activity in the bacteria, in 

addition to increasing the intracellular accumulation of ROS in bacteria, this action was 

enhanced by colistin [110]. 

Gigantol, a bibenzyl phytocompound, was tested for restoring the sensitivity of mcr 

harboring GNB. The activity of colistin and gigantol combination against MDR GNB was 

studied in-vitro and in-vivo. Gigantol was able to restore the colistin activity against mcr 

harboring GNB including, E.coli, Salmonella, and K. pneumoniae that carry mcr-1, mcr-3, and 
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mcr-8, respectively. Mechanistically, gigantol was able to down-regulate the mcr genes 

expression, and subsequently decrease the MCR-1 protein production, and stop its action by 

attaching to residues of amino acids, Pro481 and Tyr287. Evaluation of gigantol safety presented 

that the gigantol addition was able to relieve the colistin hemolysis effect [111]. 

 

Conclusion 

The world is encountering a huge and rising threat from the appearance of bacteria that 

are practically resistant to all existing antibiotics. Dissemination of MDR GNB may be silent and 

poses significant challenges for infection control measures. The most serious GN bacterial 

infections that occur in the healthcare environment are most commonly produced by 

Enterobacteriaceae in addition to Pseudomonas aeruginosa and Acinetobacter species. MDR 

GN bacterial pathogens are increasingly spread in the community. 

Colistin (polymyxin E), a non-ribosomal cyclic oligopeptides antimicrobial agent, was 

considered “a miracle” antibiotic in the 1950s at its first commercial, with low resistance level 

and bactericidal activity toward GNB. After the colistin discovery, it was used in Japan, Europe, 

and in the United States during the 1950s [112]. Colistin was gradually rejected in the early 

1980s in many parts of the world due to its nephrotoxicity. Subsequently, colistin use was 

limited to the lung infection treatment in patients with CF during the previous two decades [1]. 

The development of the bacterial resistant strains to mainly all available antibiotics and the lack 

of novel antimicrobial agents that are able to defeat these life-threatening pathogens have led to 

the reevaluation of polymyxins, particularly colistin, as a last hope drug for the treatment of 

these infections [10, 19].  

Unfortunately, colistin reuse especially for the treatment of carbapenem-resistant 

pathogens, has led to the existence of colistin resistance. Acquired colistin resistance mainly 

results from chromosomal gene mutations, but, the discovery of  mcr-1 to mcr-10 genes which 

carried on plasmid, encoding a phosphoethanolamine transferase, also aided in the development 

of colistin resistance.  
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