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ABSTRACT 

Linear regression models are common, powerful statistical methods that are used to build 

a model between dependent variable and one or more independent variables to explain and validate 

the relationship between the dependent variable and the independent variables the parameters of 

the linear regression model are unknown. Estimators are derived to estimate those parameters. 

Ordinary Least Square (OLS) is one of the most common estimates for the linear regression 

parameters since its best linear unbiased estimators (BLUE) under certain assumptions. The 

occurrence of outliers in the data leads OLS to have a poor fit and misleading results. Robust 

estimates are designed to handle the presence of outliers by different methods, among many robust 

estimates which developed across the years, the most common and efficient estimates are 

discussed. The results indicate that among the different estimates MM estimate had superiority 

over OLS and other robust estimates, leading to the conclusion that the presence of outliers could 

lead to many consequences, checking for their presence and handling them appropriately is a most 

for efficient fitting. 

Keywords: linear regression, ordinary least squares (OLS), M estimate, S estimate, MM estimate. 
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1-Introduction 

Linear regression models are common, powerful statistical methods that used to build a 

model between dependent variable and one or more independent variables to explain and validate 

the relationship between the dependent variable and the independent variables the parameters of 

the linear regression model are unknown. Many estimators are derived to estimate those 

parameters. Ordinary Least Square (OLS) is one of the most common estimates for the linear 

regression parameters since its Best Linear Unbiased Estimator (BLUE) under certain 

assumptions. The OLS relies on assumptions to be BLUE, such as are linear it assumes that the 

relationship between the dependent variable and the independent variables must be linear. 

 𝑌 = 𝑋𝛽 + 𝜀  (1.1) 

Where 𝑌 the dependent variable (𝑛 × 1) vector, 𝑋 is (𝑛 × 𝑘) matrix of the independent variables, 

𝛽 is (𝑘 × 1) vector of coefficients, and 𝜀 is (𝑛 × 1) vector of errors. 

zero mean OLS assumes that the error term have mean of zero 𝐸(𝜀) = 0, Homoscedasticity 

assumed that the variance of the error term across all the values of the independent variables must 

be equal 𝐸(𝜀𝜀′) = 𝜎2𝐼𝑛, normality the distribution of the error term must be normal with zero 

mean and one standard deviation 𝜀~𝑁(0,1), exogeneity (independent) the error term are 

independent from the independent variables no correlation between them, no autocorrelation the 

error term observations are independent from each other’s, and no multicollinearity assumed that 

the independent variables are not perfectly correlated of each other. When these assumptions are 

achieved the OLS will be best linear unbiased estimator (BLUE), best indicating to the 

minimization criteria of the OLS which make the OLS the most efficient estimator among all linear 

unbiased estimators, linear as the coefficients estimated through OLS are naturally linear, unbiased 

OLS estimators are unbiased since they are on average accurate estimates of the true population 

parameter, and estimator since the OLS is estimation method for the linear regression unknown 

population parameters.  

The formula of OLS estimator in matrix form  

 �̂� = (𝑋′𝑋)−1(𝑋′𝑌).  (1.2) 

Where  �̂� is the estimated parameter vector, 𝑋′ is the transpose of the independent variables 

matrix, (𝑋′𝑋)−1 represents the inverse of the product of the matrix of the independent variables 

and its transpose. 
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The violation of OLS assumptions leads to many consequences biased estimates, inefficient 

estimates, invalid hypotheses tests, inaccurate predictions, inflated or deflated standard errors, and 

incorrect inferences. The presence of outliers in the dependent or independent variables violates 

several OLS assumptions, such as linearity, error zero mean, normality of errors, homoscedasticity, 

and independence of errors. Robust regression is one of the best remedies when handling violations 

that include the presence of outliers since it has high resistance against outliers. Unlike classical 

methods, this chapter will discuss different types of outliers in regression, detection techniques, 

and remedies while focusing on robust regression. 

2. Methodology 

2.1 Outliers  

As Barnett and Lewis (1) defined, outliers are observations that appear inconsistent with the 

rest of the data set. They can have a strong influence on the regression analysis. There are various 

types of outliers in regression. It is common to classify them as follows:  

• Residual outlier: A point that has a large standardized or studentized residual when it is 

used in the sample of 𝑛 observation to fit the model. 

• X-space outlier: An observation that is remote in one or more x coordinates, some types 

of robust regression techniques are ineffective against that type of outlier, also referred to 

as leverage points. 

• Y-space outl1ier: An observation that is unusual in its y coordinate. The effect that the 

observation has on the regression model depends on its x coordinate, and one of the general 

dispositions of the other observations in the sample. 

•  X-space and Y-space outlier: An outlying observation in both x and y coordinates. This 

type of point depends on the disposition of the other sample observations. 

Figure 1 shows the different types of outliers. The ellipse defines most of the data. Points A, 

B, and C are outliers in 𝑌-1space since their 𝑦 value is signif1icantly dif1ferent from the rest 

of the data and residual outliers. Points B, C, and D are outliers in 𝑋-space since their 𝑥 value 

is unusual, also referred to as leverage points. D is an outlier in 𝑋-space but not a residual 

outlier. Points B and C are leverage points and residual outliers. Point A is an inlier in 𝑋-space 

but a residual outlier. Point E is an inlier in 𝑌-space but a residual outlier.  
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Figure 1: Scatter plot for the different type of outlying observations. 

Source: (2) 

Classic estimation methods for regression can be misleading in many cases as the presence of 

outliers in the data, violation in the regression assumptions and the error distribution is not normal. 

One of the most used estimation methods is ordinary least squares (OLS). However, this method 

gives misleading and insignificant results in the presence of outliers, on the other hand, the robust 

estimators can achieve the desirable characteristics for the estimators when there are violations in 

the assumptions. As follows a more complete review of existing robust estimators. 

2.2. Evaluating Regression Estimators 

Evaluation of regression estimators can be done by using many different criteria. Some of 

them are more significant than others.  

2.2.1 The Breakdown Point 

The breakdown point (BDP), Donoho & Huber (2) introduced one of the most important 

quantitative characteristics of robustness. Breakdown point is defined as “The minimum 

proportion of observations in data set that need to be changed to make the resulting arbitrarily far 

from the estimate based on the original data“ (3). BDP is a global assessment robustness estimator, 

where the high BDP point methods are considered as one primary goal in most research in 

robustness. There are two types of BDP: Addition breakdown point (ABDP) and replacement 

breakdown point (RBDP). 

1- ABDP of an estimator is defined as “The minimum addition fraction which could drive the 

estimator beyond any bound.” 
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Let (𝑋𝑛) = {𝑋1, … . , 𝑋𝑛} be a sample of size n. the finite sample ABDP of an estimator θ at 𝑋𝑛 is 

defended as: 

𝐴𝐵𝐷𝑃(𝜃, 𝑋𝑛) = min {
𝑚

𝑚 + 𝑛
: 𝑠𝑢𝑝𝑌  𝑚‖𝜃(𝑋

𝑛 ∪ 𝑌𝑚) − 𝜃(𝑋𝑛)‖~ ∞} , (2.1) 

Where 𝑌𝑚  denotes the dataset from size m with arbitrary values, and 𝑋𝑛 ∪ 𝑌𝑚  denotes the 

contaminated sample by adjoining 𝑌𝑚 to 𝑋𝑛. 

2- RBDP of an estimator θ is defined as “the minimum replacement fraction which could drive 

the estimator beyond any bound.” 

The finite RBDP of an estimator at 𝑋𝑛  is formulated as 

𝑅𝐵𝐷𝑃(𝜃, 𝑋𝑛) = 𝑚𝑖𝑛 {
𝑚

𝑛
: sup𝑋 𝑚   𝑛‖𝜃(𝑋𝑚

   𝑛) − 𝜃(𝑋𝑛)‖~ ∞}, (2.2) 

Where 𝑋𝑚
   𝑛 denotes the contaminated sample from 𝑋𝑛 by replacing m points of 𝑋𝑛 with arbitrary 

values, sup denotes supremum function, where supremum is taken over all the samples, and ‖ ‖ 

denotes the norm. 

2.2.2 Influence function 

Influence function (IF) is a  critical quantitative assessment of robustness Hampel (4) 

defined IF as for sample 𝑧 = (𝑧1, … , 𝑧𝑛). 

 
𝐼𝐹(𝑧, 𝑇, 𝐹) = lim

∈→0
(
𝑇(𝐹∈) − 𝑇(𝐹)

∈
), 

(2.3) 

where T(F) is a functional that defines the estimator T(F(n)), F(n) is the empirical distribution 

function 𝐹∈ = (1−∈)𝐹+∈ ∆𝑧 , and  ∆𝑧 is the distribution that puts all its mass at z. The IF measures 

the effect on the estimate of an infinitesimal contamination at point z, standardized by the amount 

of contamination. 

There are properties of an influence function which grant it with desirable performance are (4): 

• Gross-error sensitivity (G.E.S) 𝐺. 𝐸. 𝑆 = sup
𝑥∈𝑋

|𝐼𝐹(𝑥; 𝐹, 𝑇)| Where G.E.S represent the 

highest value of the influence function. 
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• Local shift sensitivity (L.S.S) 𝐿. 𝑆. 𝑆 = sup
𝑥≠𝑦

 
|𝐼𝐹(𝑥)−𝐼𝐹(𝑦)|

|𝑥−𝑦|
 where (L.S.S) is the highest possible 

effect  that can happen from adjusting the observations from the values of the estimated 

parameter. 

• Rejection points  𝜌∗ = 𝜌∗(𝑇, 𝐹) = inf{𝑟 > 0 ∶ 𝐼𝐹(𝑥: 𝑇, 𝐹) = 0, ∀|𝑥| > 𝑟} these measures 

how large an observation must be before the estimator ignores it completely. If sizeable 

observations are almost gross errors, it is good for 𝜌∗ to be finite. 

2.3. Robust Regression Estimators  

2.3.1 M-Estimator 

M-estimators are one of the most common methods of robust regression (5). This class 

estimators can be regarded as a generalization of maximum-likelihood estimation. M-estimators 

are solutions of normal equation with appropriate weight function; they are resistant to outliers in 

Y coordinate, but sensitive to outliers in X coordinate (leverage points) M-estimate defined by 

replacing the least-square criteria ∑ (𝑦𝑖 − 𝑥𝑖
𝑡𝛽)2𝑛

𝑖=1  with robust criteria: 

 �̂� = 𝐚𝐫𝐠𝐦𝐢𝐧
𝜷
∑ 𝝆(

𝒚𝒊−𝒙𝒊
𝒕𝜷

�̂�

𝒏
𝒊=𝟏  ),  (2.4) 

Where 𝜌(∙) is a robust loss function, �̂� (median absolute deviation) is an error scale estimate, 

differentiating the objective function and setting the derivative to 0 produce:  

 
∑𝝍

𝒏

𝒊=𝟏

(𝒚𝒊 − 𝒙𝒊
𝒕𝒃)𝒙𝒊 = 𝟎, 

(2.5) 

The BDP of M-estimate is 
1

𝑛
 and IF is:  

 𝝍𝒄(𝒕) =  𝝆
′(𝒕) = 𝐦𝐚𝐱{−𝒄,𝐦𝐢𝐧(𝒌, 𝒕)}, (2.6) 

Huber (6) recommended using k = 1.345. This choice produces a relative efficiency of 

approximately 95% when the error density is normal. 

The iteratively Reweighted least squares (IRLS) method is used to solve the M-estimates 

nonlinear normal equations. The following iterative algorithm summarize this (7): 

1. Start by estimating OLS as initial estimate of β and the estimate �̂�. 

2. Calculate the weights, 𝑤𝑖. 

3. Calculate a new estimate using equation )2.4(. 
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4. Repeat step 2 and 3 until the algorithm converges. In the end, the formula of M-

estimator is: 

 𝜷𝑴 = (𝒙𝒕𝒘𝒙)−𝟏(𝒙𝒕𝒘𝒙);𝒘 = 𝒅𝒊𝒂𝒈{𝒘𝒊}, (2.7) 

 

Table 1 Objective and Weight Functions of the Estimation Methods 

Method Objective function Weight function 

OLS 𝑢2 1 

Huber  

(𝑘 =  1.345) 
{

1

2
𝑢2 𝑓𝑜𝑟 |𝑢|  ≤ 𝑘

𝑘|𝑢| −
1

2
𝑘2 𝑓𝑜𝑟 |𝑢| > 𝑘

 {

1  𝑓𝑜𝑟 |𝑢|  ≤ 𝑘
𝑘

|𝑢|
 𝑓𝑜𝑟 |𝑢| >  𝑘

 

Bisquare  

(𝑘 =  4.685) 
{
 

 
𝑘2

6
{1 − [1 − (

𝑢

𝑘
)2]3}  𝑓𝑜𝑟 |𝑢| ≤ 𝑘

𝑘2

6
                      𝑓𝑜𝑟 |𝑢| > 𝑘

 
{[1 − (

𝑢

𝑘
)
2

]
3

   𝑓𝑜𝑟 |𝑢| ≤ 𝑘

0                     𝑓𝑜𝑟 |𝑢| > 𝑘

 

Source: (7) 

The 𝜓-function of Huber estimator is constant-linearly. A re-descending 𝜓-function 

increases the weight assigned to an outlier until a specified distance and then decrease the weight 

to 0 as the outlying distance get larger. Montgomery et al. (8) introduced two types of re-

descending 𝜓-function: soft re-descender and hard re-descender. Alamgir et al. (9) proposed a new 

re-descending M-estimator, called Alamgir re-descending M-estimator known as (ALARM) the 

𝜓-function is defined as: 

 

𝝍(𝒆) =

{
 
 

 
 𝟏𝟔𝒙𝒆−𝟐(

𝒆
𝒃
)

(𝟏 + 𝒆
−(
𝒆
𝒃
)
)
𝟒   𝒊𝒇 |𝒆| ≤ 𝒃

𝟎                      𝒊𝒇 |𝒆| > 𝒃

, 

 

(2.8) 

 

Where 𝑒 denotes the error and b is a tuning constant. Tukey’s Bisquare functions 𝜓𝑐(𝑡) =

𝑡 {1 − (
𝑡

𝑐
)
2

}
2

 and 𝑘 =  4.685 produces 95% efficiency. Bai et al. (10) also applied Huber’s 𝜓-
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function and Tukey’s function to provide robust fitting of mixture regression models. If 𝜌(𝑡) =

|𝑡|, then least absolute deviation (LAD) estimates are achieved by minimizing the sum of the 

absolute value of the residuals: 

 
�̂� = argmin

𝛽
∑ |𝑦𝑖 − 𝑥𝑖

𝑡𝛽|
𝑛

𝑖=1
, 

(2.9) 

LAD is known as 𝑙1 estimate, it had a low efficiency of 0.64 when the errors are normally 

distributed. 

2.3.2 S-Estimator 

Considering the problem of low BDP of M-estimators Rousseeuw and Yohai (11) proposed 

a scale estimator of M-estimator (S-estimator). S-estimates are aims to find the smallest possible 

dispersion of the residuals, that minimize the variance of the residuals to attain high BDP but with 

low efficiency defined as: 

 �̂� = argmin
𝛽
�̂�(𝑒1(𝛽),… , 𝑒𝑛(𝛽)), (2.10) 

Where 𝑒𝑖(𝛽) = 𝑦𝑖 − 𝑥𝑖
𝑡𝛽 and �̂�(𝑒1(𝛽),… , 𝑒𝑛(𝛽)) is the scale M-estimate. Which is defined as the 

solution of 
1

𝑛
∑ 𝜌 (

𝑒𝑖(𝛽)

�̂�
)𝑛

𝑖=1 = 𝛿, where 𝛿 is taken to be 𝐸ϕ[𝜌(𝑒)]. It can attain a high BDP of 0.5 

and has an asymptotic efficiency of 0.29 under the assumption of normally distributed errors. 

2.3.3 MM-Estimator 

Another regression estimator that should be mentioned is the MM-estimator introduced by 

Yohai (12), The modified version of M-estimates has been popular and is one of the most used 

robust regression techniques. The MM-estimate can be found by a three-stage procedure: 

1. Compute an initial consistent estimate �̂�0 with high BDP but possibly low normal 

efficiency by using LMS or S-estimate with Huber or Bisquare function. 

2. Compute a robust M-estimate of scale �̂� of the residuals based on the initial estimate 

1

𝑛
∑ 𝜌0 (

𝑒𝑖(�̂�)

�̂�
) = 0.5,𝑛

𝑖=1  when 𝜌0(𝑒) = 𝜌1 (
𝑒

𝑘0
), 𝜌(𝑒) = 𝜌1 (

𝑒

𝑘1
), assume ρ function is 

bounded and 𝑘0 = 1.56 ensures that the estimator has the asymptotic BDP =0.5. 

3. Find M-estimate �̂� starting at �̂�0 by 𝐿(𝛽) = ∑ 𝜌 (
𝑒𝑖(�̂�)

�̂�
) .𝑛

𝑖=1  
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The BDP of the MM-estimate depends only on 𝑘0 and the asymptotic variance of the MM-

estimate depends only on 𝑘1. The larger the 𝑘1 is, the higher efficiency the MM-estimate can 

become normal distribution. Maronna et al. (13)  provided the values of 𝑘1 with the corresponding 

efficiencies of the biweight 𝜌 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. The following table shows more details:  

Table 2 corresponding efficiencies of the biweight -function 

Efficiency 0.80 0.85 0.90 0.95 

𝒌𝟏 3.14 3.44 3.88 4.68 

Source: (14) 

Yohai (12) indicates that MM-estimate with larger values of 𝑘1 are more sensitive to 

outliers than the estimates corresponding to smaller values of 𝑘1. In practice, an MM-estimate with 

Bisquare function and efficiency 0.85 (𝑘1= 3.44) starting from a Bisquare S-estimate is 

recommended. 

3. Application 

This application demonstrates the comparison between the robust regression estimators 

applied on datasets containing different types of outliers. The dataset was provided from properti 

website which provides datasets for real estate in several countries. The used data was collected 

2014 from Mexico City the data contains three independent variables and a dependent variable the 

dataset consists of 2100 observations. 

The following table provides a summary statistic for the dataset.  

Table 3: Descriptive statistics for the variables.     

Variable Mean Median Min Max Standard deviation 

𝑝𝑟𝑖𝑐𝑒 𝑈𝑆𝐷 133618 113714   33193   458268 79832.01 

𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 20.77    19.64    15.75    32.67 2.736219 

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 -98.82 -99.20 -117.05 -86.77 4.813789 

𝑎𝑟𝑒𝑎 𝑝𝑒𝑟 𝑚2 173    160    60    385    79.73616 
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Table 3 presents the descriptive statistics for various variables. For the 'price USD' variable, 

the median is substantially lower than the mean, suggesting a right-skewed distribution and 

potential presence of high-value outliers. Conversely, for the 'Latitude' variable, the median is 

relatively close to the mean, indicating a more symmetric distribution and suggesting fewer 

outliers. The 'Longitude' variable, despite a median seemingly close to the mean, requires careful 

interpretation. The broader range compared to its standard deviation suggests variability that might 

not be captured by just comparing these two metrics alone, hinting at possible outliers. Lastly, the 

′𝑎𝑟𝑒𝑎 𝑝𝑒𝑟 𝑚2' shows a mean close to the median, suggesting a symmetric distribution and 

indicating that outliers are less likely to be present. The subsequent box plots should help in 

confirming these deductions by visually depicting the distribution spread and highlighting the 

presence of outliers for each variable. 

 

Figure 2: Box plots for the model variables 

The box plots verify the presence of outliers in all the variables except for the area per 𝑚2 

while dependent variable price USD seems to have the highest number of outliers.  

The following figure provides a scatter and correlation matrix for all the variables in the 

dataset and on the diagonal the histogram for each variable. 
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Figure 3: scatter and correlation matrix for the model variables 

The following part demonstrates the comparison between the robust regression estimates 

and OLS estimate. 

The following table illustrates the results from OLS estimate: 

Table 4: OLS estimate Summary.     

𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝒔 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒆𝒓𝒓𝒐𝒓 𝒕 𝒗𝒂𝒍𝒖𝒆 𝒑 −  𝒗𝒂𝒍𝒖𝒆 

Intercept -30679.43 30042.65 -1.021 0.307 

𝑳𝒂𝒕𝒊𝒕𝒖𝒅𝒆 -5113.83 596.64 -8.571 0.0000 

𝑳𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒆 -1710.88 339.64 -5.037 0.0000 

𝒂𝒓𝒆𝒂 𝒑𝒆𝒓 𝒎𝟐 586.41 18.02 32.540 0.0000 

Goodness of fit 

𝑭 − 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄 359.9 𝒑 − 𝒗𝒂𝒍𝒖𝒆 0.0000 

𝑹𝟐 𝑨𝒅𝒋 𝑹𝟐 𝑹𝑴𝑺𝑬 𝑨𝑰𝑪 𝑩𝑰𝑪 

0.34 0.339 64900 52504.32 52532.57 
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The following table illustrates the results from M estimate: 

Table 5: M estimate Summary 

𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝒔 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒆𝒓𝒓𝒐𝒓 𝒕 𝒗𝒂𝒍𝒖𝒆 𝒑 −  𝒗𝒂𝒍𝒖𝒆 

Intercept -34335.0188 24025.4429 -1.4291 0.153153 

𝑳𝒂𝒕𝒊𝒕𝒖𝒅𝒆 -4313.6304 477.1420 -9.0406 0.0000 

𝑳𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒆 -1481.7537 271.6158 -5.4553 0.0000 

𝒂𝒓𝒆𝒂 𝒑𝒆𝒓 𝒎𝟐 592.6405 14.4119 41.1217 0.0000 

Goodness of fit 

𝑭 − 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄 365.6 𝒑 − 𝒗𝒂𝒍𝒖𝒆 0.0000 

𝑹𝟐 𝑨𝒅𝒋 𝑹𝟐 𝑹𝑴𝑺𝑬 𝑨𝑰𝑪 𝑩𝑰𝑪 

0.38 0.379 46750 52300.97 52323.22 

The following table illustrates the results from S estimate: 

Table 6: S estimate Summary 

𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝒔 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒆𝒓𝒓𝒐𝒓 𝒕 𝒗𝒂𝒍𝒖𝒆 𝒑 −  𝒗𝒂𝒍𝒖𝒆 

Intercept -26269.62 21866.19 -1.201 0.23 

𝑳𝒂𝒕𝒊𝒕𝒖𝒅𝒆 -3760.45 441.86 -8.511   0.0000 

𝑳𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒆 -1254.82 254.61 -4.928 0.0000 

𝒂𝒓𝒆𝒂 𝒑𝒆𝒓 𝒎𝟐 585.38 17.23 33.980 0.0000 

Goodness of fit 

𝑹𝟐 𝑨𝒅𝒋 𝑹𝟐 𝑹𝑴𝑺𝑬 𝑨𝑰𝑪 𝑩𝑰𝑪 

0.483 0.4823 43550 52245.97 52271.22 

 

The following table illustrates the results from MM estimate: 

Table 7: MM estimate Summary 

𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝒔 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒆𝒓𝒓𝒐𝒓 𝒕 𝒗𝒂𝒍𝒖𝒆 𝒑 −  𝒗𝒂𝒍𝒖𝒆 

Intercept -46210.29 22134.55 -2.088 0.0369 

𝑳𝒂𝒕𝒊𝒕𝒖𝒅𝒆 -2589.11 441.90 -5.859 0.0000 

𝑳𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒆 -1082.50 254.45 -4.254 0.0000 

𝒂𝒓𝒆𝒂 𝒑𝒆𝒓 𝒎𝟐 591.58 14.57 40.603 0.0000 

Goodness of fit 

𝑹𝟐 𝑨𝒅𝒋 𝑹𝟐 𝑹𝑴𝑺𝑬 𝑨𝑰𝑪 𝑩𝑰𝑪 

0.787 0.7867 42550 52023.86 52048.42 
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The above table shows that all the independent variables are statistically significant for all 

the models while as noted the standard error for the robust estimation are smaller than OLS, all the 

models are overall significant while the MM estimate goodness of fit results demonstrates that it’s 

the best estimate among the other estimates the following chart illustrates the differences in the 

evaluation criteria for each model. 

 
Figure 5: Column charts for Estimates evaluation Criteria. 

4. Conclusion 

 In this paper, several robust estimates were reviewed in the presence of outliers, alongside 

OLS. The estimates were compared through an application with real data. The results obtained 

were favorable for MM estimate by having lower AIC, BIC, RMSE, and higher Adjusted R square. 

The results lead us to conclude that using robust estimators in the presence of outliers is a most 

since the outliers are part of everyday data. 
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