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ABSTRACT 

Diabetic retinopathy (DR) is a significant problem of diabetes, leading to vision 

impairment and blindness if left untreated. Early detection is crucial for effective intervention. 

This paper uses deep learning methods to detect DR from retinal fundus images automatically. 

Five pretrained convolutional neural network (CNN) architectures, including VGG16, ResNet50, 

InceptionV3, MobileNet, and DenseNet121, were modified, retrained, and evaluated on a standard 

dataset. Different evaluation metrics such as accuracy, ROC, and F1-score were used to evaluate 

model performance. The dataset used in this project is sourced from Roboflow and is designed to 

detect diabetic retinopathy. The dataset is divided to training, validation, and testing with 70%, 

20%, and 10% respectively. Results demonstrated that the DenseNet121 model can effectively 

detect DR, with the best-performing model achieving accuracy (AC), precision (PR), recall (RC), 

false positive rate (FPR), F1-score (F1), and ROC curve (AUC) of 93%,  91.60%, 92.25%, 6.45%, 

93%, 0.98% respectively. This paper discusses these findings' implications and suggests future 

research directions. 
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1-Introduction 

Diabetic retinopathy (DR) is a major hurdle of diabetes mellitus, affecting millions of 

individuals worldwide. It is characterized by damage to the retinal blood vessels, which can lead 

to vision impairment and blindness if not detected early. It is very important to detect and treat it 

Early for preventing many visual injuries and stating the quality of life for diabetic patients. The 

dependence on traditional screening methods, which usually require specialized medical personnel 

and equipment, highlights the need for more accessible and efficient diagnostic tools [1]. 

    Recently, advancements in deep learning and image processing techniques have shown great 

promise in automating the detection of diabetic retinopathy. Convolutional neural networks 

(CNNs) have emerged as a particularly effective approach to image classification tasks, including 

medical image analysis. By leveraging large datasets of retinal images, these models can learn to 

identify patterns indicative of diabetic retinopathy, potentially improving the speed and accuracy 

of diagnosis [2]. However, the performance of these models can vary extensively based on the 

architecture used and the quality of the training data [3]. 

    Despite the progress in automated detection methods, several challenges persist. One of the 

primary issues is the variability in the quality and labeling of the datasets used for training, which 

can lead to overfitting and poor generalization to unseen data. Additionally, many existing studies 

focus on a limited number of models without comprehensive comparisons, making it difficult to 

determine the most effective approach for DR detection [4]. This underscores the need for a 

systematic evaluation of multiple architectures on standardized datasets. 

The increasing prevalence of diabetic retinopathy has led to significant advancements in automated 

classification systems that leverage deep learning techniques. These systems aim to enhance 

diagnostic accuracy and assist healthcare professionals in making informed decisions. A variety 

of methodologies have been proposed in recent literature, showcasing the application of different 

deep learning architectures and datasets. 

Kanika Verma et al [5] proposed a machine learning model for diabetic retinopathy different stages 

classification , the proposed model has built on random forest technique based on the area and 

perimeter of the blood vessels and hemorrhages with 90% accuracy. Darshit Doshi et al [6] 

developed a GPU accelerated deep CNN to automatically classify high-resolution retinal images , 

the single model accuracy is 0.386 on a quadratic weighted kappa metric and ensembling of three 

such similar models resulted in a score of 0.3996. 
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Carson Lam  et al [7] introduced a diabetic retinopathy classification framework consisting of three 

deep learning models, CNN , GoogleNet and AlexNet, the testing results showed the superiority 

of GoogleNet with accuracy of 74.5%. Mohamed Chetoui et al [8] proposed a framework showed 

the use of different texture features for diabetic retinopathy , the proposed framework has been 

built on Local Ternary Pattern (LTP) ,Local Energy-based Shape Histogram (LESH), Local Binary 

Pattern (LBP) and Support Vector Machine (svm) , the expermintal results showed that LESH is 

the best technique with accuracy of 90.4%. 

Quang H. Nguyen et al [9] proposed an automated classification system analyzes fundas 

images of diabetic retinopathy with varying illumination, The proposed system has been built on 

CNN, VGG-16 and VGG-19 with 82% classification accuracy and 90.4% AUC. Shu-I Pao et al 

[10] introduced a diabetic retinopathy detection framework , the authors used the bichannel CNN 

to incorporate the features of both the entropy images of gray level and green level component 

preprocessed by UM , the model achieved accuracy of 87.8%. Akhilesh Kumar Gangwar et al [11] 

proposed a novel deep learning hybrid model , the authors developed this model using  Messidor-

1 diabetic retinopathy dataset and APTOS 2019 blindness detection (Kaggle dataset), the propsed 

model has been built on Inception-Resnet-v2 and added a custom block of CNN layers on the top 

Inception-Resnet-v2 ,The model achieved a test accuracy of 72.33%. 

Ling Dai et al [12] developed a deep learning system named DeepDr to detect early-to-late 

stages of diabetic retinopathy, this developed model trained for real-time image quality assesment, 

lesion detection and grading using 466,247 fundus images from 121,342 patients with diabetes and 

achieved AUC of 90.1%. CNNs have revolutionized image classification jobs.  A CNN is a type 

of deep neural network that extracts relevant characteristics from pictures and learns hierarchical 

representations.  A CNN has many major layers that play an important role in extracting 

information from an input dataset. 

   This paper aims to address these challenges by modifying five different deep learning pretrained 

models are VGG16, ResNet50, InceptionV3, MobileNet, and DenseNet121 on the available 

standard dataset for diabetic retinopathy detection. This is work will analytically compare their 
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performance using accuracy, precision, recall, and F1-score, to provide a comprehensive 

understanding of their effectiveness. 

   The main objective of the CNN models is to achieve the best performance results in image 

detection. Therefore, in our work, we concentrated on these key contributions to obtain better 

results than those of other related works: 

1. Five different CNN models are modified with different layers of CNNs, which are named 

VGG16, ResNet50, InceptionV3, MobileNet, and DenseNet121. 

2. The architecture uses depthwise separable convolutions to significantly reduce the number 

of parameters compared to standard convolutions. 

3. The results of these designed classification models were compared to determine the optimal 

model with the highest accuracy for diabetic retinopathy detection. 

4. The performance results of the best model were compared with those in the literature. 

 

    The remainder of this paper is organized as follows. Section 2 describes the materials and 

methods used in the study, including dataset preparation and model architecture. In Section 3 

testing environment based on the dataset used and the performance metrics used is discussed, 

Section 4 presents the results of the experiments and a detailed discussion of the findings. Finally, 

Section 5 concludes the paper conclusions, summarizing the key insights and suggesting directions 

for future research.  

 

2. Experimental 

Convolutional Neural Networks, or CNN, can play a crucial role in picture categorization. 

Its approach is built on employing several tiny filters to specify the characteristics in each layer. 

CNN is made up of several sequential layers, each of which may extract certain information from 

the input picture. CNN's primary layers are the convolutional layer, sampling layer, activation 

layer, and fully connected layers. Deep feature extraction involves extracting features from certain 

pre-trained CNN models.  

Our model consists of two stages as shown in Fig.1.The procedure starts with inputting our 

dataset.  The photos are then preprocessed using techniques such as scaling and augmentation.  

Various CNN architectures, including VGG16, ResNet50, InceptionV3, MobileNet, and 
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DenseNet121, are utilized to extract and categorize features from this dataset.  Finally, choose the 

optimal architecture that will improve our model's performance. 

 

 
Figure 1. The overall structure of proposed model 

 

2.1 Data Preprocessing Techniques 

Auto-Orient: This technique was applied to ensure that all images were oriented correctly 

before training. Auto-orientation helps in standardizing the dataset, allowing the model to learn 

effectively from images without facing issues related to incorrect orientations that could confuse 

the training process. This preprocessing step is crucial as it strips images of their EXIF data, 

ensuring consistent display and interpretation during model training [13]. 

Resize: All images were resized to a uniform dimension of 640x640 pixels. This resolution 

is crucial because it ensures that each input to the CNN has the same dimensions, facilitating batch 

processing and improving the model's efficiency. The stretching method was employed, 

maintaining aspect ratios where feasible, to prevent significant distortion that might impact the 

model's ability to recognize features accurately [14]. 

Preprocessing is a crucial step in preparing the dataset for training machine learning models 

[13]. In this section, outline the preprocessing techniques applied for six different models, 
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including a hybrid approach that combines the strengths of these models will be discussed in Table 

1. 

Table 1. The proposed models preprocessing techniques. 

Techniques VGG16 ResNet50 InceptionV3 MobileNet DenseNet121 

Resizing 224x224 224x224 299x299 224x224 224x224 

Normalization Using the 

ImageNet 

statistics 

Using the mean and 

standard deviation 

Using the ImageNet 

statistics 

dividing by 255 dividing by 255 

Augmentation Standard 

augmentation 

rotation, 

width/height shifts, 

zoom, and 

horizontal flips 

variety of 

transformations 

including random 

cropping and aspect 

ratio adjustments 

rotation and 

flipping 

rotation, width/height 

shifts, zoom, and 

horizontal flips 

 

2.2 Method selection 

Five Convolutional Neural Network (CNN) architectures were utilized in this study: 

VGG16, ResNet50, InceptionV3, MobileNet, and DenseNet121. These architectures were selected 

due to their proven effectiveness in image classification tasks and their varying complexities, 

which allow for a comprehensive evaluation of performance across different model types. Each 

model was implemented using TensorFlow and Keras, popular frameworks for deep learning that 

facilitate the development and training of neural networks. Convolutional Neural Network 

Architectures. 

VGG16: This architecture is known for its simplicity and effectiveness in image 

classification tasks. It employs a deep network with 16 layers, consisting of convolutional and 

fully connected layers. VGG16 uses small receptive fields (3x3 convolutions) and has 

demonstrated exceptional performance in various image recognition challenges. Its depth allows 

it to learn complex features, making it suitable for detecting subtle patterns in diabetic retinopathy 

images[15]. 

ResNet50: ResNet50 introduces the concept of residual learning, enabling the training of 

very deep networks by using skip connections. This architecture consists of 50 layers and addresses 

the vanishing gradient problem, allowing for the effective training of models with considerable 
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depth. ResNet50 is particularly powerful in preserving detailed information from earlier layers, 

which is essential for accurately classifying images with varying degrees of diabetic 

retinopathy[16]. 

 

InceptionV3: This architecture is designed to improve computational efficiency while 

maintaining high accuracy. InceptionV3 employs multiple filter sizes in parallel, allowing the 

model to learn features at different scales. The use of auxiliary classifiers during training helps in 

combating the vanishing gradient problem, making it effective for complex image classification 

tasks, including medical image analysis.[17] 

MobileNet: MobileNet is optimized for mobile and edge devices, providing a lightweight 

solution for image classification tasks. It uses depthwise separable convolutions, which 

significantly reduce the number of parameters and computations required, making it ideal for 

performance-constrained environments. MobileNet’s efficiency allows it to deliver fast inference 

times while retaining competitive accuracy, crucial for real-time diabetic retinopathy 

screening.[18] 

DenseNet121: This architecture connects each layer to every other layer in a feed-forward 

fashion, promoting feature reuse and reducing the number of parameters. DenseNet121 consists of 

121 layers and is known for its high accuracy in image classification tasks. Its ability to concatenate 

features from multiple layers helps it learn richer representations, which is beneficial for detecting 

the subtle signs of diabetic retinopathy in retinal images.[19] 

 

Table 2. The proposed model’s architecture modification. 

Techniques VGG16 ResNet50 InceptionV3 MobileNet DenseNet121 

Convolutional Layers √ √  √ √ 

Inception Modules   √   

Global Average Pooling Layer  √ √ √ √ 

Max-Pooling Layers √     

Transition Layers     √ 

Batch Normalization Layers  √    
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Fully Connected Layer √ √ √ √ √ 

Softmax Activation Layer √ √ √ √ √ 

 

 

 

When preparing the five models—MobileNet, DenseNet121, VGG16, ResNet50, and 

InceptionV3 for training, specific layers are added as shown in Table 2 to facilitate effective learning 

and enhance classification performance. 

 

These layers are strategically added to each model to optimize their ability to learn from 

the training data while ensuring adaptability to various image classification tasks. Proper 

configuration of these layers is essential for achieving high accuracy and efficiency during 

training. 

 

3. Testing Environment 

3.1 Dataset description 

The dataset used in this project is sourced from Roboflow [20] and is designed for the 

detection of diabetic retinopathy. It consists of labeled images categorized into different classes 

that represent various stages of diabetic retinopathy. The images are collected from a diverse set 

of patients to ensure a wide range of examples and variability in the data. The dataset is divided 

into three main subsets as shown in Table 3. We get a more accurate estimate of the model's 

predicted performance on unseen data. A doctor assessed the presence of DR in each image. Figure 

2 illustrates how we categorize the supplied dataset. 

Table 3. The dataset is divided into three main subsets. 

Type Training Validation Testing Total 

Normal 1104 325 186 1615 
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DR 
1196 333 142 1671 

Total 2300 
658 328 3286 

 

 

Figure 2. Different images with Normal images in first raw and DR images in the second raw 

. 

3.2 Model Training  

Table 4 shows hyperparameters utilized in training the proposed models. The model 

training process involved utilizing five distinct convolutional neural network architectures: 

VGG16, ResNet50, InceptionV3, MobileNet, and DenseNet121, each model was trained on the 

prepared training dataset, which comprised images resized to 224x224 pixels.  

To ensure robust performance, the validation set was used to monitor each model's 

accuracy throughout the training process. This validation allowed for real-time adjustments to 

hyperparameters, such as learning rate and batch size, optimizing each model's performance. The 

training duration was standardized across all models to provide a fair comparison. 

After completing the training phase, each model was evaluated on a separate test set that 

had not been seen during training. This evaluation measured the accuracy to assess each model's 

performance comprehensively. By comparing the results, the paper identifies the strengths and 
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weaknesses of each architecture, ultimately leading to insights about their effectiveness in the 

context of diabetic retinopathy detection.  

 

Table 4. The proposed models training hyperparameters. 

Hyper 

parameter 
VGG16 ResNet50 InceptionV3 MobileNet DenseNet121 

Loss function 
categorical cross-

entropy 

categorical 

cross-entropy 

categorical 

cross-entropy 

categorical 

cross-entropy 

categorical 

cross-entropy 

Optimizer Adam Adam RMSprop Adam SGD 

Epochs 50 75 50 50 100 

Batch size 32 32 32 32 16 

Learning rate 0.001 0.001 0.001 0.001 0.01 

 

3.3 Environment 

The experiments were conducted in a cloud-based environment using Kaggle [21], which 

provides robust GPU resources for deep learning tasks. Kaggle’s platform is designed for data 

science and machine learning competitions, offering a user-friendly interface and integrated tools 

that facilitate the entire workflow from data preprocessing to model evaluation. 

In this paper, the models were trained on a GPU, which significantly accelerated the 

training process compared to CPU-only training. The specific GPU model used in this environment 

was the NVIDIA Tesla P100, known for its high computational power and efficiency in handling 

deep learning tasks. This GPU features 16 GB of memory, allowing for the training of complex 

architectures such as VGG16, ResNet50, InceptionV3, MobileNet, and DenseNet121 without 

encountering memory limitations. 

The Kaggle environment also supports the installation of various libraries essential for deep 

learning, including TensorFlow and Keras. These libraries provide a comprehensive suite of tools 

for building and training neural networks, offering pre-trained models and easy access to advanced 

functionalities such as data augmentation and model evaluation metrics. 
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Overall, the Kaggle platform provides an ideal environment for conducting experiments in 

deep learning, combining powerful computational resources with a collaborative and accessible 

interface, thus enhancing the efficiency and effectiveness of the model development process. 

3.4 Performance metrics 

In the experiments presented in this research, different performance measures [22-23] are 

used to assess the classification performance of the presented models and the comparative models. 

They are: accuracy (AC), precision (PR), recall (RC) or true positive rate (TPR), false positive rate 

(FPR), F1-score (F1), and ROC curve (AUC). Equations 1-5 express the computations for these 

metrics. 

AC = 
𝑇𝑃𝑉+𝑇𝑁𝑉

   𝑇𝑃𝑉+𝐹𝑁𝑉+𝑇𝑁𝑉+𝐹𝑃𝑉
                                                              (1) 

PR =
𝑇𝑃𝑉

𝑇𝑃𝑉 + 𝐹𝑃𝑉

                                                                                  (2) 

RC = TPR =
𝑇𝑃𝑉

𝑇𝑃𝑉 + 𝐹𝑁𝑉

                                                                                (3) 

F1 = 2 ∗  
𝑅𝐶 ∗ 𝑃𝑅

𝑅𝐶 + 𝑃𝑅
                                                                           (4) 

FPR =
𝐹𝑃𝑉

𝐹𝑃𝑉 + 𝑇𝑁𝑉

                                                                                  (5) 

 

where the confusion matrix parameters are  𝑇𝑃𝑉 is the number of true positives, 𝐹𝑃𝑉 is the 

number of false positives, 𝑇𝑁𝑉 is the number of true negatives, and 𝐹𝑁𝑉 is the number of false 

negatives [24]. 

The ROC curve is created by calculating the true positive rate (TPR) and false positive rate 

(FPR) at each potential threshold (in practice, at predetermined intervals) and then plotting TPR 

vs FPR.  A perfect model with a TPR of 1.0 and an FPR of 0.0 at a certain threshold. 

 

4. Results  

In this paper, evaluated five convolutional neural network architectures for image 

classification in diabetic retinopathy detection are introduced. The Confusion matrix for each 

model is shown in Table5. The performance measures for each model are shown in Table 6.  

 

Table 5. The Confusion matrix for each model 
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Model 𝑇𝑃𝑉 𝑇𝑁𝑉  𝐹𝑃𝑉 𝐹𝑁𝑉 

VGG16 142 0 186 0 

ResNet50 132 14 172 10 

InceptionV3 142 0 186 0 

MobileNet 140 161 25 2 

DenseNet121 131 174 12 11 

 

Table 6. The performance measures for each model 

Model PR RC (TPR) FPR AC F1 Score ROC (AUC) 

VGG16 43.29 1 1 43.00 26% 0.55 

ResNet50 43.42 92.95 92.47 45.00 33% 0.59 

InceptionV3 43.29 1 1 43.00 26% 0.55 

MobileNet 84.84 98.59 13.44 92.00 92% 0.99 

DenseNet121 91.60 92.25 6.45 93.00 93% 0.98 

 

The results indicate a significant change in performance among the models. VGG16 

achieved relatively low accuracy and F1 score, indicating that it struggled to differentiate between 

classes effectively. The ROC AUC of 55% suggests that the model has limited capability in 

distinguishing between the positive and negative classes, likely due to overfitting or inadequate 

feature extraction for this specific dataset. ResNet50 performed slightly better than VGG16, but 

still showed limited effectiveness. The higher F1 score indicates improved precision and recall, 

but the overall performance remains unsatisfactory. The architecture may not have captured the 

nuances of the dataset, leading to a similar issue of overfitting or insufficient training data. 

InceptionV3's results mirror those of VGG16, with similarly low metrics across the board. This 

suggests that the model might not be well-suited to the specific characteristics of the dataset. The 

complex architecture of InceptionV3, while powerful, may require more extensive tuning or a 

larger dataset to perform effectively. MobileNet demonstrated outstanding performance, achieving 

high accuracy and an impressive F1 score. The ROC AUC of 99% indicates that MobileNet is 

highly effective at distinguishing between classes. This model's lightweight architecture is 

particularly advantageous for image classification tasks, allowing it to generalize well even with 

potentially limited data. DenseNet121 also performed exceptionally well, closely matching 

MobileNet's metrics. The architecture's dense connectivity pattern likely facilitated better feature 
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reuse, enabling the model to learn richer representations from the images. The slightly lower ROC 

AUC compared to MobileNet suggests room for improvement in classification confidence. 

Overall, MobileNet and DenseNet121 proved to be the most effective models for the task, 

likely due to their ability to learn and generalize from the dataset.  

The ROC curves serve as a critical evaluation tool for assessing their classification 

capabilities. The area under the ROC curve (AUC) quantifies the model's ability to distinguish 

between classes, with values closer to 1 indicating superior performance. For instance, MobileNet 

and DenseNet121 are anticipated to exhibit high AUC values as shown in Figure 3, reflecting their 

proficiency in correctly classifying positive and negative instances of diabetic retinopathy with 

minimal overlap. By comparing these ROC curves, one can gauge the trade-offs between 

sensitivity and specificity for each model, facilitating informed decisions on which architecture to 

deploy for optimal diagnostic accuracy. 

 

Figure 3. The ROC curve of MobileNet on the left and DenseNet121on the right. 

 

Overall, these findings highlight the importance of selecting appropriate architecture for 

specific image classification tasks. The superior performance of DenseNet121 and MobileNet. 

underscores its suitability for complex image analysis in medical applications, making it a 

promising choice for future work in diabetic retinopathy detection. 

Table 7 presents a comparative analysis of various models in the literature utilized for 

diabetic retinopathy detection. The recommended models, MobileNet and DenseNet121, achieved 

impressive accuracies of 92.00% and 93.00%, respectively, demonstrating their effectiveness in 

extracting and classifying features from medical images. In contrast, earlier studies show a range 



ERURJ 2025, 4, 3, 3097-3115 

 

3110 

of performances, with Kanika Verma et al. (2011) achieving 90% accuracy using traditional 

machine learning techniques. Subsequent advancements in deep learning are illustrated by Darshit 

Doshi et al. (2016) with a GPU-accelerated deep CNN scoring 0.3996, and Carson Lam et al. 

(2018) utilizing GoogleNet, which yielded a lower accuracy of 74.5%. Notably, Mohamed Chetoui 

et al. (2018) reported an accuracy of 90.4% with their LESH model, while Quang H. Nguyen et 

al. (2020) combined CNN, VGG-16, and VGG-19 to achieve 82% classification accuracy and a 

90.4% AUC. Further contributions by Shu-I Pao et al. (2020) and Akhilesh Kumar Gangwar et al. 

(2021) reflect the ongoing evolution of model architectures, with accuracies of 87.8% and 72.33%, 

respectively. Ling Dai et al. (2021) introduced a deep learning system named DeepDr, achieving 

an AUC of 90.1%. This table underscores the significant progress in model performance over the 

years, highlighting the advantages of contemporary architectures in improving diagnostic 

accuracy. 

 

Table7. Comparison of the proposed detection model against literature. 

Ref Year Method  
Evaluation metrics (%) 

PR RC (TPR) FPR AC F1 Score ROC (AUC) 

Kanika Verma et al [5] 2011 Machine learning 1 87.5 0 90 - - 

Darshit Doshi et al [6] 2016 deep CNN - - - 30 - - 

Carson Lam et al [7] 2018 GoogleNet 95.05 91.5344 4.26 74.5 - - 

Mohamed Chetoui et al [8] 2018 LESH - - - 90.4 - 0.93 

Quang H. Nguyen et al [9] 2020 
CNN, VGG-16 and 

VGG-19 

-- - - 82 - 0.904 

Shu-I Pao et al [10] 2020 CNN UM  77.81 6.12 87.8 - 0.93 

Akhilesh Kumar et al [11] 2021 Inception-Resnet-v2  - - - 72.33 - - 

Ling Dai et al [12] 2021 DeepDr - 76.2 12.8 - - 0.934 

Proposed Mode 2025 MobileNet 84.84 98.59 13.44 92.00% 92% 0.99 

Proposed Model 2025 DenseNet121 91.60 92.25 6.45 93.00% 93% 0.98 

 

5. Discussion 

MobileNet and DenseNet121 achieved the highest accuracy in the classification tasks due 

to several key factors related to their architectures and design philosophies. 

1. Efficient Feature Extraction: Both models are built on advanced convolutional neural 

network (CNN) architectures that excel at hierarchical feature extraction. MobileNet 
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utilizes depthwise separable convolutions, which reduce the number of parameters and 

computations while maintaining the ability to learn rich feature representations. This 

efficiency allows MobileNet to perform well even with limited data, making it suitable for 

various tasks, including medical image classification. DenseNet121, on the other hand, 

employs densely connected layers that facilitate feature reuse throughout the network. This 

architecture enables the model to capture complex patterns in the data more effectively, 

leading to superior performance in identifying subtle variations in images. 

2. Robust Training Techniques: Both models benefit from robust training techniques such 

as data augmentation and transfer learning. By augmenting the training data, these models 

can generalize better to unseen images, reducing overfitting and improving their ability to 

classify images accurately. Additionally, DenseNet121's architecture allows for better 

gradient flow during training, which helps in converging to optimal weights more 

efficiently. This, combined with the use of pre-trained weights on large datasets, allows 

both models to leverage learned features that enhance their performance on specific tasks 

like diabetic retinopathy detection. 

3. Adaptability to Diverse Datasets: MobileNet and DenseNet121 are designed to adapt 

well to various datasets, benefiting from their flexibility in handling different image sizes 

and resolutions. This adaptability ensures that they can perform well across a range of 

medical imaging scenarios, capturing the essential features necessary for accurate 

classification. Their ability to maintain high accuracy even under different conditions 

contributes to their effectiveness in real-world applications, where variability in image 

quality and content is common. 

In summary, the combination of efficient architecture, robust training techniques, and 

adaptability to diverse datasets explains why MobileNet and DenseNet121 achieved the highest 

accuracy among the models evaluated. These factors enable them to excel in classifying complex 

medical images, ultimately leading to better diagnostic outcomes. 

 

6. Conclusion and Future Work 

This paper demonstrated the effectiveness of various convolutional neural network 

architectures for diabetic retinopathy detection, revealing significant differences in accuracy. Five 

pretrained convolutional neural network (CNN) architectures, VGG16, ResNet50, InceptionV3, 
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MobileNet, and DenseNet121, were customized, retrained, and assessed on a standard dataset.  To 

assess model performance, many assessment criteria were utilized, including PR, TPR, FPR, 

Accuracy, Roc, and F1-score. DenseNet121 emerged as the most effective model, achieving a 

remarkable accuracy of 93%. This emphasizes the critical role of architecture selection in 

enhancing diagnostic accuracy in healthcare applications. Future work should focus on several 

areas to further improve model performance. Exploring ensemble methods could leverage the 

strengths of multiple architectures, while hyperparameter tuning may optimize the performance of 

other models. Additionally, investigating transfer learning and data augmentation techniques could 

enhance the robustness of the models, particularly in scenarios with limited data. Overall, the 

findings of this paper highlight the potential of advanced deep learning techniques in improving 

diagnostic accuracy in medical imaging, paving the way for more effective tools in the detection 

and management of diabetic retinopathy and other similar conditions. 
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